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Abstract. Sea surface temperature (SST) is one of several indicators of climate system of the 
Earth. We used model SST to observe SST dataset from buoy arrays in the eastern equatorial 
Indian Ocean. Relationship between SST and other climate parameters can be represented in 
linearity approach. This approach shows that temporal variability of the SST as a dominant 
effect. Linear model fitting (LMF) has been examined with four treatments, with and without: 
covariate transformation, interaction, centering, and addition time covariate in the model. The 
LMF chosen as basic construction in the model with covariate interaction combination and 
transformation, which increases magnitude of multiple-R2 (56.62%) and adjusted-R2 (56.13%), 
i.e. 0.31% and 0.43% respectively. This shows that time covariates have a strong significance 
effect in the model, compared to continuous covariates. However, the model has autocorrelation, 
which has large Akaike Information Criterion (AIC) value then this deletion of effects can be 
done through the autoregressive moving average. Moreover we obtained that LMF which 
suitable to SST is model with AIC value 403.2987 by using three climate features include two 
time covariates. Furthermore, we observed that using GAM model fitting showed an increase in 
explained deviance to 65.90%, a significant decrease in AIC from 678.24 to 634.99 and 
significant increase in adjusted-R2 from 51.20% to 64.40% by using sixteen climate features 
include two times covariates without interaction and transformation. 

1. Introduction 
Sea surface temperature (SST) is one of many important indicators that indicates/marks the climate 
system of the Earth. The SST data are useful to early detection climate change and global warming. In 
fact, the ocean is the particular region of the earth where 70.9% areas and 29.1% is mainland. The largest 
ocean is the Pacific Ocean (165,759,239.06 km2) and the second largest is the Atlantic Ocean 
(106,448,511.33 km2), and third largest is the Indian Ocean (72,519,667.09 km2). SST data is essential 
indicator to recognize climate variability in the earth [1-3], such as El Nino and La Nina phenomena in 
the Pacific Ocean that affects on dry and wet seasons in Indonesian and its adjacent region. 

There are several reasons we modeled the SST data in the eastern equatorial Indian Ocean. First, the 
observed SST data show complex structure like missing values that represented as gaps which vary 
among buoys array. Second, in addition Aceh province is located in the western most Indonesia region 
and it directly connect with Indian Ocean on southern and western waterbody. Third, in 2012 Magnus 
et all proposed a climate model to investigate the effects of solar radiation and the greenhouse effect on 
global warming [4]. Their analysis is based on the data from land stations only and does not consider 
the relationship between sea and land dataset. Hence, the objectives our study, the SST data is used to 
reveal the relationship among variables in both by using linear and generalized additive model (GAM). 
Further, firstly, we reviewed the basic construction regarding linear model fitting without and with 
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covariate transformation. Secondly, we used through linear combination of covariates interaction and 
without/with transformation in the linear model. Thirdly, we applied the second steps with centering 
approach. Fourth, we developed model by using linear model with consider autocorrelation aspect. 
Finally, we developed model by using GAM model with the number of extended climate features.   
 
2. Material and Methods 
 

2.1. Materials and data 
In this study we used one of moored buoy arrays in the Indian Ocean at 1.50N,900E, operated by 
JAMSTEC Japan as part of the Tropical Atmosphere Ocean (TAO) program [5]. The buoy collect real-
time SST daily data at 1 m depth from 1 January 2006 to 8 June 2012.  The SST dataset consist of 2,066 
daily observations with the response variable SST (0C) from 00.00 - 12.00 pm GMT [6].  

To show essential time covariates in the linear model, we used f(.) function as represented by model 
with three continuous covariates and two time covariates, i.e. month and year. We assume that three 
continuous covariates which correspond linearly with SST, i.e. the relationship will be the same for all 
levels of the time covariate and without interaction between the covariates, as follows [6], 

     SSTi = �0 + �1Temperaturei + �2Humidityi + �3Rainfalli + �kMonthi + �lYeari + �i                                      (1) 
 

for k = 1, …, 12; l = 1, 2, …, 6, and i = 1,…,n, where � and  � are vector parameter of time covariate for 
month and year respectively. We construct unrestricted model where the model has seasonal effect �m 
and annual effect �l are restricted to 0. We evaluate several models with different order include time 
covariate in the model fitting.  

Previously, modeled SST data is as linear combination of three parameters of climate features and 
two time covariates [2]. These parameters are air temperature (0C), relative humidity (%) covariates. 
They have mean with the same time records on 07.00 WIB, 13.00 WIB and 18.00 WIB, whereas rainfall 
(mm) during 3-hours period, seasons and annual factors. We extend to SST dataset to buoy position at 
40N; 900E, depth 1 m, on period 2011 to 2015 with 16 climatic parameters, such as wind speed, 
subsurface temperature, shortwave radiation, salinity, humadity, precipitation, dynamic height, 
density, air temperature, isoterm, conductivity, zonal and merid current velocity, and time 
covariates (month and year). The complexity of the linking between the SST and the parameters 
becomes challenging in construction a dynamic model. Treatments with respect to the model constructed 
are without and with covariate transformation, without and with covariate interaction, and mixed both 
mentioned treatment. 

 
2.2. Linear and Interaction Model Fitting  
In preliminary modelling, daily SST data are used with linear in parameters assumption that denoted as 
(xi, yi), for i = 1, 2,…,n where xi as covariates and yi as response variables. The relationship between the 
random variables X and Y can be written in the matrix form as [6,7]:  

Y = X� + �                                         (2) 
where Y represents a vector of observations (y1,…, yn)T� Rn, � represents a vector of parameters 
(�0,�1,…,�p)T � Rp+1, X � Rnx(p+1) represents a matrix with rows n and columns p + 1 of a set p covariates 
X0, X1,…, Xp of length n including an intercept and errors � are assumed independent and identically 
distributed, i.e. normal random variable � ~ N(0n, �2In), where � represents a column vector (�1,…,�n)T 
of error and In  as the identity matrix. In formulation, for the covariates we can describe as quantitative 
values, qualitative, transformation, interaction among covariates, and various data types.  

Let random variable Y then the probability density function (pdf) of a continuous (or the probability 
mass function (pmf) for Y is discrete) is referred as a probability distribution and denoted as f(y; �), 
where � represents the parameters of the distribution. The conditional expectation describes the linear 
or functional relationship of parameter in model, 

    E[Y|X] = �j=0 �jXj                         (3a) 
or 

�i = E[Y|Xi] = f (Xi), i = 1,…, n                        (3b) 
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Assumption additivity with interaction model: 
�ij = � + �i + �j + (��)ij                        (4) 

where � is constant, �i and �j are main effects, and (��)ij is interaction effect. 
 
2.3. Generalized Additive Models Fitting 
In a generalized additive models, suppose denoted Y is conditionally independent of the covariates x 
given the additive covariates [6,7,8] 

Y = � + �j=1 fj(xj) 
where fj(xj) for some functions fj. Let Y and X are random variables that representing response (output) 
and covariate (input), respectively then conditional relationship between both the variables can be 
written as 

                                             (4a) 

                                                                                            (4b) 
Thus, model aditive is defined by the following: 

                 (5) 
where the �0 is an intercept, fj is model types, such as linear, nonlinear, smooth function, spatial, 
interaction, etc, that combining covariate effects. Expectation, variance and covariance � errors 
independently of Xj,  
 
E[�i] = 0, and var(�i) = �2, cov(�) = �2In.             (6) 

 
GAM model is an extension of the Linear Models (LM) and Generalized Linear Models (GLM) 

through a link function g(.), with assume that variable response follows several exponential family 
distributions. In general GAM structure is given as follows: 

                                (7) 
In other words, from equation (5) is, 

                                 (8) 
where f* is response expectation by estimating additive function. From equation (5) we assume �i ~ N(0, 
�2), [7]. In GAM model, [7] used loess smoothers or smoothing splines functions, whereas GAM via 
mgcv package by Simon Wood [9] and the model for large data sets [10].  By using spline regression 
method, we used knots to minimalize penalize as in the following:  
 

�Y - X��2 + 	
f �(x) 2 dx            (9) 

where given 	 or through cross validation to select optimal penalty.   

3. Results and discussion 
  
3.1. Linear model fitting of the SST dataset  
In this section we apply our methodology to SST dataset on several treatments in model fitting. 
In preliminary, the linear model is developed by without and with covariate transformation, as follows 

M1: SST = �0 + �1Temp + �k Month + �lYear + �2Humd + �3Rain + � 

By analysis of its variance, it is revealed that humidity and rainfall have insignificant effects as shown 
in table 1. Temperature and time covariates (Month and Year) have p-value <2e-16. It means that three 
covariates have significant effects to sea surface temperature compared with humidity and rainfall 
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effects by using M1 model. Through linier model (M1) reveals that air temperature around ocean given 
affect to sea surface temperature condition on the certain month and year, as seen in figures 1 and 2.  

Table 1. ANOVA of the M1 model. 

Source     df           SS          MS         F-value     Pr(>F) 
Temperature 1 83.331  83.331 581.2248 <2e-16 *** 
Month 11 236.830  21.530 150.1698 <2e-16 *** 
Year 6 57.463   9.577  66.7999 <2e-16 *** 
Humidity   1 0.183   0.183   1.2750 0.2590     
Rainfall 1 0.002   0.002   0.0132 0.9087     
Residuals 2045 293.193   0.143     

 
By the parameters estimation of the M1 model showed that time effects on September and October 

have insignificant, whereas for 2011 and 2012 are insignificant effects as well. The model fitting reaches 
56.31% (R2 value). The specific time effects on the SST data can be showed by M1 model as seen in 
figure 1. Season effect occurs on monthly unit, exclude on September and October. Probably on the both 
month occurs time transition of the change season for the sea surface temperature phenomenon in the 
investigated period. 

 
Figure 1. Annual effect of the M1 model. 

 
In figure 1, the annual effect shows slightly increase of annual variation that happened between 2006-

2007, rapid decreasing that occurred between 2007-2008, and rapid increasing between 2008-2010. 
Hereinafter, it decreased sharply to 2011 and slowly decreased between 2011-2012. In general, between 
2007-2008 the SST data fitting by using M1 model showed non-positive effect. Likewise, it is between 
2011-2012. However, between 2006-2007 and between 2008-2011, it gives positive effect. 

 
Figure 2. Seasonal effect of the M1 model. 
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The seasonal effect showed that increase trend that happened from January to June and a decrease 
trend from June to September (figure 2). Furthermore, a second feeble increase trend appeared again 
until November and subsequent decrease until December. A peak of the highest month effects occurs in 
June and lowest in September (figure 2).  

Whereas the seasonal effect between January and February occurred rapid increase, and slightly 
increase from February to March. Further it occurs rapid increase return from March to May. The slightly 
increase the seasonal effect also occurs again from May to June. However, it rapid decrease happens 
from June to September. The slightly increase the seasonal effect go on September to October and 
rapidly increase go on October to November. Finally, it decreasing again occurs from November to 
December. 
 
3.2. Linear model with treatment of the SST dataset 
We know that generalized additive models (GAMs) are an extension function of linear models (LM) 
and generalized linear models (GLMs). Before our discussed regarding GAMs models fitting for the 
SST dataset, in this section we explore linear models fitting by using several treatments. Each treatment 
can be constructed as a M model and symbolized as M1, M2, M3, …, M15 models. The main treatments 
are transformation, interaction, and centering. 
 
3.2.1. Linear model fitting with covariate transformation. We constructed M2 model as seen in M1 
model with covariate transformation. It is used Rain = log(RAIN+0.01). By analysis of variance process 
it revealed that humidity and rainfall does not significant effects. The transformation rainfall covariate 
did not change fitting magnitude on model in the multiple R2. However, it changed on adjusted R2 i.e., 
0.01%. This is caused by continuous covariate effect which is very small, compared to time covariate 
effect in the linear model fitting (see M1 and M2 models). 
 
3.2.2. Linear model fitting with covariate interaction and without transformation. Effect of 
interaction modeling on the continuous covariate as in M1 and M2 models is developed to the M3 model. 
Result of ANOVA analysis for this model showed that humidity, rainfall and all interactions of 
continuous covariates did not have significant effect. Interaction effect in the model without 
transformation provided the multiple R2 increasing on 0.06%. Although magnitude of adjusted R2 is 
stable on 55.88% (see R2 values pre and post interaction in the M2 and M3 models). 
 
3.2.3. Linear model fitting with covariate interaction and transformation. In this section, we can be 
expressed again M3 model as M4 model with rainfall transformation.  From ANOVA table knows that 
humidity, rainfall and interaction of continuous covariate does have insignificant effect, exclude 
interaction between humidity and rainfall covariates gives strong significant effect. It is also for 
temperature, Month and Year covariates. By parameter estimation of the M4 model shows the 
combination effect between interaction and transformation in the M4 model gives changing multiple R2 
and adjusted R2 magnitudes on 0.31% and 0.43% respectively (see R2 value on M1 and M4 models). 
 
3.2.4. Linear model fitting with covariate interaction and without transformation and centering. Analog 
M3 model, we construct M5 model without centering. By analysis of variance as seen in the ANOVA 
table shows that humidity, rainfall, and all interaction of does have insignificant effect of treatments 
without transformation and centering. The centering effect in the interaction model does not changes R2 
value. This is caused by there is domination effect of time covariate bigger than continuous covariate 
effect (see R2 value in the M3 and M5 models). 
  
3.2.5. Linear model fitting with covariate interaction, transformation and centering. In this section, 
analog the construction of model M5 we developed the M6 model with transformation. Through 
ANOVA table knows that humidity, rainfall and several interaction of continuous covariate does not 
have significant effect, exclude interaction between humidity and rainfall covariate gives strong 
significant effect. It shows that treatment by interaction with transformation more effect    than only with 
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centering without transformation. Treatment for covariate interaction, transformation of continuous 
covariate and centering in the M6 model interaction gives effect with respect to R2 values, multiple-R2 
and adjusted-R2 respectively on 0.18% and 0.12% (see R2 values on the M1 and M6).   
 

3.2.6. Rainfall transformation and interaction of time covariates. The construction M7 model can be 
written, as follows SST = (Temp + Humd + Rain)*Month + (Temp + Humd + Rain)*Year. Furthermore, 
interaction between continuous covariate and factor covariate is combined in the linear model, where 
treatments with and without transformation. From this treatment knows that an increase R2 and adjusted 
R2 values, from 56.62% (M4) to 60.26% (M7) and from 56.13% (M4) to 58.85% (M7). However, by 
this treatment combination effect causes changing in annual affect patterns and monthly effects, so that 
this interaction combination can be ignored in the model fitting. Although with and without 
transformation as in M7 and M8 models provide significance between several factor interactions of time 
covariates and continuous covariates. It can be obtained by ANOVA table. It shows that significant 
effect, except for humidity and interaction between rainfall and year as time covariates. 
 
3.2.7. Without rainfall transformation and with interaction of time covariates. The construction M8 
model can be written as analog with the M7 model without transformation. In this treatment knows also 
that an increase R2 and adjusted R2 values, from 56.37% (M5) to 60.20% (M8) and from 55.88% (M5) 
to 58.78% (M8). Based on results of interaction combination effect between continuous covariate and 
factor covariate then further investigation with respect to autocorrelation in the model fitting.  

Table 2. Summary of linear model fitting for SST data. 

Model Residual SE df Multiple R2 Adjusted R2 F-statistic AIC 
M1 0.3786 2045 56.31% 55.88% 131.8 (df=20 & 2045) 1864.176 
M2 0.3786 2045 56.31% 55.89% 131.8 (df=20 & 2045) 1872.767 
M3 0.3786 2042 56.37% 55.88% 114.7 (df=23 & 2042) 1876.128 
M4 0.3776 2042 56.62% 56.13% 115.9 (df=23 & 2042) 1864.176 
M5 0.3786 2042 56.37% 55.88% 114.7 (df=23 & 2042) 1876.128 
M6 0.3781 2042 56.49% 56.00% 115.3 (df=23 & 2042) 1870.220 
M7 0.3657 1994 60.26% 58.85% 42.59 (df=71 & 1994) 1779.054 
M8 0.3660 1994 60.20% 58.78% 42.48 (df=71 & 1994) 1782.316 

 
Table 2 shows that the M1-M2 models without interaction and the M3-M6 models with interaction 

have a similar residual standard error (SE) values, except for the M4 model. The model (M1- M8) has t
he same p-value < 2.2e-16.  However, all models mentioned has large AIC so that it needs fitting impr
ovement. 

Residual on within and between groups for time covariate become concerns in linear model 
fitting by autocorrelation structure. The M9-10 models are constructed through a correlation 
ARMA(p = 1, q =1)  M11 model with ARMA(p = 2, q =2) produces AIC negative values (as 
seen in table 3).For this reason then we needs upgrading fit performance with respect to model 
fitting with the autocorrelation construction by using AR(1) model, in the M12 and M13 models 
without and with transformation respectively. 

Table 3. AIC of Model Structure Constructed. 
Model Structure AIC 
M9 SST = Temp + Month + Year + Humd + Rain -1357.3650 
M10 SST= Temp + Month + Year + Humd +  

Temp*Humd + Temp*Rain + Rain + Humd*Rain 
-1313.4470 

M11 Analog M10 with transformation -1318.3260 
M12 Analog M10 with transformation -755.2367 
M13 Analog M10 with transformation -771.0071 
M14 Analog M10 with transformation 556.4355 
M15 Analog M10 with transformation 403.2987 
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The result as in table 3 gives negative point of half AIC values on previous models. Further by using 
autocorrelation ARMA approach with ~1| Month formulation implemented on the M14 and M15 models 
gives AIC positive value. In this study, correlation matrix of the model is not shown. Through 
generalized least squares (GLS) fit by using Restricted Maximum Likelihood to construct model is as 
follows: 

Table 4. GLS fit by REML for Constructed Model. 

Model AIC BIC Loglik Parameter Est. df (total) Residual 
M12 -755.2367 -609.0729 403.6184 0.88001 2066 2042 
M13 -771.0071 -624.8433 411.5035 0.87993 2066 2042 
M14 556.4355 702.5993 -252.2178 0.71406 2066 2042 
M15 403.2987 549.4625 -175.6493 0.78685 2066 2042 

 
 Table 4 shows similar parameter estimation with different Akaike Information Criteria (AIC), Baye
sian Information Criteria (BIC) and Logic values of the M12 to M15 models. All models have the same 
of total degrees of freedom (df) and residual. Based on ANOVA table, then the M15 model has smalles
t value of residual SE compared with other model constructed. 

 
 

Figure 3. The M15 linear model fitting of the SST data. 
 

Results of ANOVA analysis of M12 and M13 models with coefficients correlation in the Rho = 0.5 
– 0.9 are discussed, as follows.  The significant effect on all parameters, except for humidity, rainfall 
and interaction between continuous covariate terms in both models. Based on parameter estimation 
shows that rainfall transformation given effect pretty significant with respect to changing magnitude of 
parameter values, such as intercept value changes from 26.89 become 28.181. Although several 
magnitude of parameters shows similar value or category. If we observed the SST data fitting between 
the M12 and M13 models indicates that the M13 model is smoother than the M12 model. 
 Using the M14 and M15 models with the correlation coefficient in the Rho= 0.5-0.9 obtained ANO
VA table shows that the significance effect for all parameters, except for humidity, rainfall and interact
ion between continuous covariates in the M14 and M15 models. Further based on parameter estimation 
is known that the transformation gives a significant effect on the change of parameter values      such as 
intercept value from 30.134 to 31.501. Although some parameters show quantities that it can   be categ
orized as similar or not statistically significant change as in the M14 and M15 models. figure 3 shows t
hat the M15 model fitting smoother than M14 model. It has AIC value smaller than M14 model. The M
15 model fitting more appropriate compared in the M4 model due to it have autocorrelation effect. 
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3.3. Generalized additive models fitting of the SST dataset  
By using generalized additive model (GAM) model, we have extended to use 16 climate features, where 
14 continuous covariates and 2 times covariates. We obtained several significanse parameters as seen 
table 5 with AIC value is 634.99, GCV is 0.10, and the adjusted R-squared is 64,4%. In this model, we 
used wind speed and conductivity with large missing values, as seen in table 5.  

In model fitting, we separates between continous covariates and time covariates to find time 
covariates contribution in the model. We obtain several parametric coeficients and smoothing parameter 
approximation for AIC and GCV is 665.82 and 0.10 respectively with adjusted R-squared value is 
63,1%. Thus it shows that this approach (separate and compound) has the smallest AIC value and the 
largest R2 adj. Both models show that time effects have a strong significance and the largest contribution 
in applied GAM models to the SST data. 
 

Table 5. Analysis of variance for GAM model. 

Predictor edf Red.df F-value P-value 
Wind speed 4.951 6.094 4.371 0.000 
Subsurface temperature 2.979 2.999 61.932 <2e-16 
Shortwave radiation 1.896 2.381 0.639 0.555 
Salinity 1.800 2.221 0.688 0.518 
Humidity 1.000 1.000 12.112 0.000 
Prec. rain 4.370 5.318 2.508 0.026 
Dynamic height 2.850 2.978 21.432 2.21e-13 
Density 2.845 2.976 6.774 0.000 
Air temperature 1.956 2.215 3.882 0.017 
Isoterm 1.000 1.000 0.035 0.852 
Conductivity (SSS) 2.757 2.938 6.459 0.000 
Current velocity 2.293 2.563 2.435 0.073 
Zonal 1.000 1.000 30.385 4.36e-08 
Merid 3.734 4.765 0.722 0.601 
Year 8.000 8.000 97.955 <2e-16 
Month 6.908 7.000 40.567 <2e-16 

 
 
4. Conclusion 
Linear model fitting of the SST data with interaction covariates in a combination and transformation 
gives the highest R2 value among treatments given to the model i.e., with and without interaction, with 
and without transformation, with and without covariate centering, and a combination among given 
treatments. Although the effect value of interaction covariates in combination and transformation on R2 
value small classified (under 0.5%) gives magnitudes changing in multiple R2 and adjusted R2 on 0.31% 
and 0.43% respectively. This proof shows that time covariate does have strong significant effect in the 
linear model fitting for SST dataset.  

In addition, for one buoy investigation shows that year effect does have significance highest peak 
happen on 2010 and lowest on 2008. Whereas for month effect shows increase trend occurs from January 
to June and decrease trend from June to September. Furthermore, trend continuous increase again till 
November and decrease on December. Thus, the highest peak of month effect occurred in June and the 
lowest in September. To obtain the optimal value of multiple R2 and adjusted R2 and the smallest AIC 
value, then the autocorrelation is a major concern in the fitting treatment to overcome the complexity of 
the SST dataset. Time effects have a strong significance and the largest contribution in the linear and 
GAM models in modeled the SST dataset, for with and without the number of climate features extended 
and different periods. 
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