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Abstract. Investigation of upwelling characteristics in Banggai-Maluku Sea (BMS) during super 
El Nino 2015 event and its interannual variation related to ENSO used validated INDESO model 
output and satellite imagery datasets between 2008 and 2015. The result shows the upwelling 
episode occurs during the Southeast Monsoon period from June to October, and its maximum in 
September. It is mainly forced by fully developed southerly monsoon winds, dragging surface 
water northward similar to the wind direction since the effect of Coriolis vanishes near the 
equator.  Warm surface water in the center upwelling is replaced by upwelled colder water from 
about 60 m, which evolves from southern to northern region then curving to northeastern due to 
the boundary of Sulawesi mainland. Upwelling characteristics in 2015 event is indicated by 
drastic changes in ocean-atmosphere variables, such as increased northward meridional winds/ 
infrared heat flux/ transport volume, decreased sensible heat flux/ mixed layer depth, upwelled 
26°C isotherm from 60 m depth to surface, and blooming surface chlorophyll-a. Between 2008 
and 2015, upwelling intensity in 2015 was the most powerful (index: -5.35), in contrast to 
upwelling intensity during 2010 strong La Nina event (+0.27).  Hence, ENSO influences 
significantly on fluctuation of upwelling intensity in BMS. 

1.  Introduction 
Upwelling is an oceanographic phenomenon of which deeper and colder water mass rises towards the 
surface, replacing warmer surface water mass [1]. There are three types of upwelling: coastal, equatorial, 
and polar upwelling. Coastal upwelling happens when water depletion occurs in upper layer and space 
is vacated by offshore drift, which is affected by wind and Ekman drift [2]. The trade winds generate 
equatorial upwelling, which leads to water mass uplifting to both northern and southern hemispheres, 
while polar upwelling happens near ice edge. There are several factors affected upwelling, such as wind, 
topographic condition, length and curvature of the coast [20]. 

Rising water mass in upwelling affects water mass characteristics. Upwelled water mass has cooler 
temperature with higher salinity, thus affecting surface temperature and salinity distribution in the 
region. It is also rich of nutrients, related to higher primary productivity [19]. Therefore, upwelling 
drives important biological consequences, and from there related to marine fisheries [12]. It also alters 
weather as [19] stated that weather onshore of upwelling region tend to be foggy with low stratus clouds, 
along with stable stratified atmosphere, less convection, and less rain. 

Several methods are be able to understand ocean phenomenon such as upwelling. In-situ 
hydrographic measurement can be carried out to provide information on oceanographic conditions, such 
as temperature-salinity, nutrients, and chlorophyll-a distribution, conducted by [20] and [21] in 
Makassar upwelling region, based on MAJAFLOX Cruise 2015. Recently, remote sensing and 
numerical model has been widely used to complement field measurement, due to its inexpensive cost 
and larger spatial data retrieval, which depicts actual condition. Using remote sensing data, [3] and [4], 
studied upwelling in southern Makassar Strait and Gulf of Tomini, respectively. Both studies show SST 
cooling and chlorophyll-a blooming occurred during Southeast Monsoon, associated with the southerly 
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winds fields. Numerical ocean model is also used to study upwelling, such as research on southern 
Makassar Strait by [5] using numerical model to analyze main upwelling generating force, and [6] using 
carbon-based productivity model to identify upwelling effect to primary productivity in Indonesian Sea. 
Recent hydrographic observation in southern Makassar reported upwelled water layer was found from 
subsurface (60 m) layer to surface as indicated by surfacing 25°C isotherm, 34.5 isohaline [21]. 

According to [17] and [27], Indonesian archipelago is the only region near the equator that connects 
two major oceans, the Pacific and Indian Oceans. This complicates the variability of ocean dynamics in 
the region, along with its complex topography, coastlines’ geometry, and monsoonal winds. These 
factors may as well affect oceanography phenomena happening in the area. There are several known and 
indicated upwelling area in Indonesia, such as in southern Makassar Strait [5,7,18,21,22], in southern 
coast of Java and Sumatera [8,9], in Banda Sea [10,23], and in Timor Sea [11,12], as well as in Banggai 
waters in western Maluku Sea [4]. 

Maluku Sea located in the eastern Sulawesi Island and bordered with North Maluku Islands to the 
east. The deepest depth of Maluku Sea reaches 4,500 m, in contrast with shallow coastal water of 
Banggai Islands on its southwestern boundary, and opened passage to the Seram-Banda Sea in the 
southern boundary. There is still limited research on upwelling in Maluku Sea. There are SST cooling 
and chl-a blooming in Gulf of Tomini, affected by strong winds passing Maluku Sea, which is in good 
agreement with [4,13]. However, previous upwelling studies in this region have only provided a 
simplified physical mechanism analysis and only focused on surface features of upwelling. The objective 
of this study is to investigate physical processes and dynamics of upwelling, particularly changes in 
ocean-atmosphere variables before-during-after upwelling, mechanism of upwelling generating force 
during 2015 super El Nino event, and to analysis interannual variation of upwelling intensity related to 
ENSO between 2008-2015. 

2.  Methods  

2.1.  Study area 
Study area is located off northeast Banggai waters in western Maluku Sea (figure 1). The southern 
boundary located in a shallow passage between Banggai and Taliabu Islands, connecting directly to 
northwestern Banda Sea. The eastern boundary is central deep (>2000 m) Maluku Sea, while western 
and northern boundaries are linked with outer Tomini Gulf and Gorontalo Sulawesi mainland.  Peleng 
Strait is a narrow and shallow strait, located just in the northern Banggai Islands. 

The sampling box (black rectangle) denotes for extraction of model/data validation. Black line 
represents Hovmoller analysis of ocean-atmosphere parameters. Yellow-line represents cross-section for 
seawater temperature, while red line indicates cross-section for transport-volume calculation.  The daily 
time-series data analysis of model output and satellite imagery data comprised from 1 January to 31 
December 2015, and interannual data analysis spanned from 2008 to 2015. 
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Figure 1. Study area off Banggai waters in western Maluku Sea. 

2.2.  The data 
This study used several keys atmospheric and oceanic variables derived from satellite observation and 
INDESO model output.  Those are sea surface temperature (SST), seawater temperature, wind speed, 
zonal and meridional wind stress components, latent heat flux, sensible heat flux, infrared heat flux, 
relative humidity, air temperature, instantaneous SST, salinity, and zonal and meridional current 
components. Model seawater temperature, salinity, and current are 3-dimensional data sets. These data 
acquired from the INDESO model. Configuration of this model described in detail [17].  Briefly, this 
model is based on NEMO (Nucleus for European Modeling of the Ocean) 9.0 [14] with 1/12° horizontal 
resolution.  The horizontal grid is an extraction of global ORCA (global tripolar grid used in NEMO) 
grid at 1/12° developed at Mercator Ocean. The vertical grid spreads over 50 depth levels that a depth-
dependent resolution (1 m at surface to 450 m near the bottom). Atmospheric forcing fields acquired 
from European Centre for Medium-Range Weather Forecasts (ECMWF). 

Data accuracy of INDESO model output are validated using satellite imagery data. Satellite derived 
SST and chl-a data are used to map spatial distribution of upwelling indicated area. Satellite sea surface 
height anomaly (SSHA) and SST data were used to validate INDESO model output. The SSHA data 
with horizontal resolution of 1/4° or 27-28 km were obtained from the Copernicus Marine Environment 
Monitoring Service (http://marine.copernicus.eu/).  The data based on assimilated multi-satellite data, 
such as Jason-3, Jason-2, and Cyrosat-2. 

The SST and surface chl-a data are used to map spatial distribution data, were obtained from 
http://www.indeso.web.id/indeso_wp/index.php as remote sensing observation data of INDESO Project. 
SST data are derived from MODIS/AQUA and MODIS/TERRA satellite with horizontal resolution of 
0.02°. Surface chl-a data are derived from Suomi-NPP satellite using VIIRS sensor with spatial 
resolution of 0.02°.  

2.3.  Data analysis 
Data analysis of upwelling ocean-atmosphere variables follows procedure of time-series analysis 
methods [15].  Model outputs are validated using satellite data to estimate its accuracy. Both satellite 
observation data and INDESO model outputs reanalyzed and visualized. We computed and visualized 
monthly mean along the 2015 year to map the spatial evolution of upwelling from satellite imagery data. 
Model outputs reanalyzed to understand a mechanism of generating force of upwelling, to estimate 
transport volume, and fluctuation of atmospheric and oceanic variables. To analyze generating force of 
upwelling, winds fields and currents fields are visualized as monthly average. Transport volume 
estimation was calculated following [18]. The depth and area of upwelling are analyzed with vertical 
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structure of meridional current component, leading to estimate upwelling transport volume. We analyzed 
and visualized fluctuation of atmospheric and oceanic variables were Hovmoller diagram throughout 
2015. Time-series ocean-atmosphere data are extracted from sampling box (figure 1) from 2008-2015 
to analyses interannual variation of the variables related to El Nino Southern Oscillation (ENSO). The 
comprehensive analysis on physical processes and dynamics of upwelling and its variability related to 
ENSO in western Maluku Sea used various methods. 

2.4.  Data validation  
INDESO model outputs were validated using satellite data, by comparing sea surface height model with 
observed sea level anomaly and sea surface temperature with observed SST retrieved from Copernicus, 
Marine Environment Monitoring Service. The plotting data along 2015 within a sampling box area used 
for validation, as shown in figure 1. Correlation coefficient determine the degree to which two variables 
are significantly correlated [15]. 

Sea level anomaly from both data shows the maxima during peak of the Northwest Monsoon (NWM) 
period (January-February), which decreases gradually from the first Monsoon Break (MB1), from March 
to June. While the minima occur during the Southeast Monsoon (SEM) period (June-August) (figure 2). 
Amplitude of fluctuations reveals that sea level anomaly is high during the NWM period and is 
remarkably low during the SEM period, with much higher frequency fluctuation appeared in the model 
due to higher temporal resolution. Correlation coefficient between model and observed SSHA is highly 
good (0.8713). Comparison of model and observed SST data is significantly high (0.9149) (figure 3). 
Both data-series show similar fluctuation pattern throughout the year. According to [15], both values 
show that accuracy of model is pretty good agreement and highly correlated with the data. Thus, 
INDESO model depicts observed condition and the model data sets are suitable for further analysis. 

Figure 2. Comparison between INDESO model sea surface height anomaly (black line) and observed 
satellite data (red line) in 2015. Correlation coefficient between the data is 0.8713.  

Figure 3. Comparison between sea surface temperature (black line) model and observed satellite data 
(red line) in 2015.  Correlation coefficient is 0.9149. 
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3.  Results and discussion 

3.1.  Surface features of upwelling 
The first step to inspect upwelling event in the study area is from monthly mean SST and chl-a data from 
satellite imagery data. It reveals SST cooling and chl-a blooming related to upwelling that occurs during 
the SEM period from June to October 2015 (figure 4 and 5). 

The SST during January-June varies from 27-31°C, with lower temperature is mostly seen in the 
southwestern region, close to central Sulawesi.  In January, highest temperature can be seen around 
Banggai Island. Later in February and March, the SST distribution is similar, which shows much warmer 
water in the western part, while cooler water is seen in the northeastern region and closed to Taliabu 
Island (figure 4). As in May begins, marking the end of the MB1 period, SST starts to decrease, which 
vary from 27.4-30.4°C. Much cooler water is seen between Banggai and Taliabu waters with 
temperature of 27. 4 °C. This area of low SST evolves larger in June, the beginning of the SEM period, 
with SST ranges from 26.5-29.5°C. Low SST is distributed in most part of the region, except in Tomini 
Gulf. The lowest SST is found in between Banggai and Taliabu waters. 

Contrast to first half of 2015, SST during the second half is lower, as shown cyan color dominated 
with hints of green and yellow, which ranges from 26-30°C. Highest temperature area can be seen around 
Tomini Gulf waters, while SST of Maluku Sea only reaches 27°C at most. High SST can be affected by 
region characteristics, as Tomini Gulf is semi enclosed waters (figure 4).  

Low SST appears in the southern region, a pathway of water mass intrusion from northwestern Banda 
Sea. SST gradually increase towards the north, which changes to northeast direction near northern 
Gorontalo Sulawesi mainland (see figure 1). SST is generally minimum during the SEM period. Drastic 
changes appear during the SEM period which only reaches 26.2°C at most. Largest low SST can be seen 
in September, which then slightly weaken in October. This pattern changes drastically in November and 
December, which shows the lowest value of 28°C (figure 4). 

Figure 4. Evolution of monthly sea surface temperature in 2015, indicating surface features of upwelling 
off Banggai waters in Maluku Sea during the SEM period (June-October). 

Chlorophyll-a (chl-a)   in Maluku sea waters ranges from 0.02 – 12.1 mg/m3 along 2015. High chl-a   
can be found in coastal area, which may be related to nutrient input from land which affects primary 
productivity. During the NWM period, surface chl-a ranges from 0.02 – 0.98 mg/ m3, the highest chl-a 
exists in coastal area, while in Maluku Sea only reaches 0.68 mg/ m3 with similar the coastal area (figure 
5).  It is in good agreement with [4], reporting that the chl-a   in Maluku Sea ranges from 0.1 – 1.1 mg/ 
m3 during the NWM period. 
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From January to April, there is no significant changes in spatial distribution of chl-a. But as the MB1 
ends in May, high chl-a is found not only in coastal area but also off the Banggai waters. Tip of Tomini 
Gulf and Banggai waters and Taliabu waters reveal higher chl-a. It evolves into bigger area in June, 
which is shown by larger area (in green), which represents higher   compared to its surroundings. The 
spatial distribution shows similar pattern with SST cooling (figure 5). 

An increase of chl-a continues during the SEM period, reaching 0.98 mg/m3 and above, with the 
highest chl-a is seen around Banggai Island and its eastern region. Area with high chl-a enlarges, evolve 
in northeast direction to northern Sulawesi, with the lower chl-a is seen in Peleng Strait, just north of 
Banggai Island. 

Large seasonal variation of SST and chl-a in Maluku Sea is consistent with previous study e.g. [4]. 
Seasonal peaks of chlorophyll-a blooming and SST cooling in Maluku Sea happens in August [13]. High 
chl-a   is gradually decreasing in October, and can no longer be seen in November and December, with 
chl-a   only reaches 0.32 mg/m3.

Past study (e.g. [4]) proposed that mechanism regarding chl-a blooms in Maluku Sea is associated 
with increased alongshore wind fields that drag cold water from beneath mixed layer, which support to 
phytoplankton growth in the region. Following section, we discussed more detail seasonal changes of 
surface wind fields and near-surface current in the region related to upwelling event. 

Figure 5. Evolution of monthly surface chl-a concentration in 2015 that indicates the upwelling features 
during the SEM period in Banggai waters in Maluku Sea. 

3.2.  Generating mechanism of upwelling in Banggai waters 
Monthly mean of wind stress distribution is shown in figure 6.  The arrows represent wind stress vectors, 
and its length represents wind stress magnitude. Spatial distribution of wind stress magnitude is also 
shown, ranging from 0 to 0.06 N/m2.

During the NWM period, intensity of wind stress is rather high. During the first three months, 
northwesterly and northerly wind fields blow from Tomini Gulf and Maluku Sea to Banda Sea, which 
weaken as the MB1 period begins in March. In April, wind stress significantly weakens, as seen on the 
figure 6, the color shown in April is different, and wind stress only reaches 0.008 N/m2. As May begins, 
southerly reversal wind stress occurs Banda Sea, heading northern Sulawesi. The wind fields intensify 
in June, and get much stronger when the SEM period begins, with wind stress reaching 0.048 N/m2.    

During the SEM period southerly monsoonal wind stress fields are fully excited. Wind stress with 
highest intensity tend to come from Banda Sea, which then head to Tomini Gulf and Maluku Sea. This 
high intensity wind stress reaches its peak in August. In September and October, wind stress gradually 
weakens, while in November it reaches almost calm over the region, as shown with significant changes 
of color, with wind stress only reaches 0.008 N/m2. As the NWM period begins in December, the 
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northerly-northwesterly wind fields appear with only 0.032 N/m2, heading to Banda Sea from Maluku 
Sea and Tomini Gulf. 

Wind stress gradually increase of wind stress from June to August, as the southerly monsoon winds 
begin to intensify in July. This strong alongshore wind stress exceeding 0.06 N/m2 is clearly seen from 
the passage between Banggai and Taliabu Islands, to the tip of Tomini Gulf, causing SST to drop by 
2�C and increasing the surface chlorophyll-a   of about 0.7 mg/m3(figure 6).  This pattern is related to 
the changes of SST distribution in the study area. SST shows significant decrease during the SEM period, 
which can be seen in the area between Banggai and Taliabu Island to its north, until the mouth of Tomini 
Gulf. Area with low SST widens to the northeastern waters. 

Figure 6. Evolution of monthly mean wind stress vectors in 2015.  

Normal Ekman upwelling event tends to be affected by Coriolis effect, deflecting surface currents 
from wind direction, to the right of the wind direction in the northern hemisphere, and to the left in the 
southern hemisphere. Following Ekman theory, Ekman transport due to wind stress drag, net water 
movement is directed perpendicular to wind direction, to the left of the wind stress in southern 
hemisphere and to the right in the northern hemisphere [2]. The illustration of upwelling mechanism can 
be seen in figure 7. 

Figure 7. Schematic Ekman upwelling, (a) initial condition and (b) upwelling condition. In northern 
hemisphere, southerly winds stress result Ekman drift (transport) to the right of the wind direction. (after 
[2]). 

Upwelling area in western Maluku Sea lies from the shallow passage between Banggai and Taliabu 
Islands to its northern waters. If we consider the Ekman theory with included Coriolis Effect in southern 
hemisphere, the Ekman transport due to southerly winds must be directed westward.  However, Ekman 
drift in this study area is directed northward rather than westward. Since the study area is closed to the 
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equator (2°S - 0.5°N), then the Coriolis Effect can be neglected.  This implies that strong persistent 
southerly monsoonal winds fields during the SEM period drag directly surface water quasi-northward.  
Shallow passage between Banggai and Taliabu Islands is the initial path of colder water mass flow. 
Through the mechanism of wind-driven coastal upwelling by neglecting Coriolis Effect, surface water 
mass is dragged by the wind directly northward. The vacant surface water column is then replaced by 
colder water mass from deeper layer. Due to the boundary of Gorontalo Sulawesi mainland, the flow 
direction then changes to the northeast. During the MB2 in October and November, the wind stress 
weakens and upwelling event can no longer be seen, as seen from appearance of warmer SST and low 
surface chl-a   in the southern area. 

3.3.  Near-surface circulation 
As the wind stress alters the surface layer, surface current is established in upper-layer which is similar 
to the monsoonal wind field direction (figure 8). During the NWM period, surface circulation flows 
southward, though current vectors heading northeast can also be seen. It may be affected by secondary 
ITF Maluku pathway which recirculates in eastern part of Maluku Sea. Similar pattern can be seen 
during the MB1 period with lower magnitude. At the end of the MB1 period, sea surface temperature 
and surface circulation change and start flowing southward.  

Entering the SEM period, the northward flow from northwestern Banda Sea can be seen in the 
passage between Banggai and Taliabu Islands. Strong northward currents from Banda Sea is associated 
with a development of colder STT.  Spatial distribution of low SST also develops to the north direction. 
Surface current in the near-surface layer is directly affected by wind fields. The model shows no 
deflection on current direction relative to the wind, since Coriolis Effect vanishes in the equator area. 

Due to this reason, current vectors during the SEM period flows quasi-northward. Shallow water 
between Banggai Islands and Taliabu Island as the pathway eases dragging of water mass. Strong 
southeast monsoonal wind generates stress on the surface. This causes dragging of water mass to certain 
water depth, and due to non-existent Coriolis’ effect, water mass is dragged straight to the north, causing 
water masses on shallower area replaced by colder deeper water mass, commonly known as upwelling 
(figure 8). 

Figure 8. Monthly mean of model current vectors in 25 m depth and its seawater temperature in 2015 

Vertical extent of seawater temperature and meridional current component during the NWM and 
SEM periods are shown in figure 9 and figure 10.  It is seen clearly that near-surface warmer water with 
temperature above 28°C is found during the NWM period, in contrast to that the SEM period in which 
colder water above 24 °C is predominant. So that, temperature difference between two monsoon period 
is about 2 °C (figure 9).  In general, seawater temperature ranges between 10 and 31°C during the NWM. 
During the SEM period, seawater temperature reaches 10�C in deeper layer, but the upper layer has 
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lower temperature compared to the NWM period. Highest temperature only reaches 28�C, and can be 
seen along the track. In mixed layer, the temperature difference reach 2�C cooler during the SEM period, 
while in deeper layer, temperature difference is quite small. This suits the spatial distribution of SST, 
which lower during the SEM period, and evolve from southern boundary, in shallow passage between 
Banggai and Taliabu Islands towards the north. As seen in figure.9, isotherm of 26 °C is outcropped to 
surface layer during the SEM "upwelling" period.  Coldest water with temperature 25-26 °C can be seen 
along 1.8�S to 1�S. This is the center of upwelling in Banggai waters. Colder surface water is developed 
due to upwelled water from deeper layer.  During the NWM period isotherm of 26 °C lies at 80 m depth, 
but it uplifts to surface layer during the SEM "upwelling" period (figure 9). 

Figure 9. Vertical section of seawater temperature along 124°E (a) during the NMW period in February, 
and (b)during the SEM period in August 2015. Upwelling is indicated by outcropped isotherm of 26°C 
to the sea surface (b). 

Vertical section of meridional current component during different monsoon period shows large 
seasonal variation of northward surface flow associated with upwelling event.  During the NWM period, 
strong southward flow near surface layer is found (figure 10a), but closed to coastal area reveals weak 
northward flow.  However, during the SEM period along with the occurrence of upwelling event, much 
stronger northward flow occurs (figure 10b). This northward current transports COLDER surface water 
mass from the center of upwelling in the shallow passage between Banggai and Taliabu Islands. 

Vertical distribution of meridional current component varies with depth, which much stronger at the 
surface and much weaker at deeper depth.  During the NWM period (represented by February), 
meridional velocity component reaches above 0.5 m/s that flows southward in surface layer and quasi-
vanishes at deeper depth (figure 10a). During the SEM period (August), meridional velocity component 
reaches 0.78 m/s northward in surface layer and weakens at 80 m depth.  At deeper depth (e.g. 160 m 
depth) meridional velocity component southward is seen, exceeding magnitude of 0.3 m/s.  

Upwelling event in Banggai waters indicated chl-a blooming and SST cooling, along with much 
stronger southerly wind stress and northward surface current. The upwelling appears during the SEM 
period, commenced in June and terminated in October with its peak in August. During the peak of 
upwelling in August, isotherm of 26 is outcropped at the sea surface, and seawater temperature drops to 
about 2 °C, compared to that the NWM period.  Vertical extent of upwelling depth is estimated to about 
60 m depth. Upwelling indicated region is shown by the area marked by red square (figure 10b), which 
shows strong northward flow. This region reaches about 60 m deep, with area approximately 6.72 km2.
From this area, transport volume estimation can be known, with the value of 0.4 Sv. Intensity of transport 
volume of upwelling water mass may differ from area to area, depending on magnitude of the current, 
and transport calculation approach. One of the external factors may contribute to upwelling in Maluku 
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Sea is associated with interannual climate anomaly of El-Nino Southern Oscillation (ENSO), where 
Maluku Sea showed significant correlation with ENSO [5]. 

Figure 10. Vertical section of meridional current component in February (a) and August (b) 2015. Note: 
red rectangle denotes upwelling extent during the SEM period. 

3.4.  Evolution of ocean-atmosphere changes related to upwelling episode  
Heat fluxes and instantaneous SST changed during the SEM "upwelling" period. While instantaneous 
SST cools, latent heat flux increases. Infrared heat flux weakens during the SEM period and no 
significant changes can be seen in relative humidity (not shown). Heat flux intensification may lead to 
heat loss in the mixed layer of atmosphere, and when heat loss exceeds, air temperature decreases. This 
may explain the relation between increased sensible heat flux intensification and decreased air 
temperature. Wind stress intensification may also affect heat flux intensification [16]. 

Strong seasonal variation is found from the ocean-atmosphere variables, contrasting between two 
monsoon periods. During the SEM period, modulus of wind speed is strongest, coincides with wind 
stress. Compared to zonal wind stress component, meridional wind stress component is significantly 
stronger. Air temperature cools during the SEM period.  According to [16], wind stress intensification 
may affect heat flux intensification. Heat flux intensification may lead to heat loss in the mixed layer of 
atmosphere, and when heat loss is bigger than heat gain, temperature will be lower. This explains the 
changes of sensible heat flux that intensifies while air temperature is cooling.   

Stronger wind stress drags surface water masses northward, which replaced by colder water mass 
from water column, generally known as upwelling. While simultaneously, wind stress is also affecting 
heat flux and heat loss in the study area, which explains low air temperature (not shown). 

Time-series of ocean-atmosphere variables, extracted from a rectangle sampling box in figure 1, is 
shown in figure 11.  Rapid inspection from the series revealed that negative anomaly of SST is 
commenced from June to October 2015.  This seasonal change of SST is consistent with others variables 
(figure 11), suggesting that upwelling onset begins in June and is terminated in October. Upwelling 
affects on altering water mass as response to water mass uplifting, along with changes on atmospheric 
variables.   Large seasonal fluctuation is found from the series.  SST is minimum in June, then increased 
gradually in October. Contrary to SST, chl-a increased during the same period in the year. It increased 
significantly during June-October, as it reached maxima of 12.1 mg/m3. Ekman drift due to strong 
persistent southerly monsoon winds field during the SEM period plays a role as the uplifted colder water 
mass from deeper water column (60 m depth). From there, higher nutrient colder water contributed to 
higher primary productivity, hence higher chl-a.  

As discussed previously, wind stress generated upwelling in the area. Upwelling area evolved 
northward from southern boundary of shallow passage between Banggai and Taliabu Islands.  Thus, 
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fluctuation of meridional wind stress is examined (figure 11c). Started from June, meridional wind stress 
increased, reached its peak in September, and decreased again in October. Estimated transported volume 
of water mass also shows similar fluctuation (figure 11d). Northward transport (positive anomaly) 
appeared during the SEM period that transport surface water mass from southern boundary, while during 
the NWM period negative anomaly means southward transport volume.  Much stronger southward 
transport is found in November-December 2015. 

Figure 11. Anomaly of a) SST, b) chlorophyll-a, c) meridional wind stress, and d) transport volume 
estimate in 2015 

Seasonal variation of atmospheric variables is also found (figure 12). Infrared heat flux and air 
temperature are minima during the SEM period, while sensible heat flux increases. This changes may 
occur due to heat loss, as heat flux intensifies when wind stress intensifies (figure 12).  This is consistent 
with increased meridional wind stress during the SEM (figure 11).  

As the atmospheric characteristics are changing, the changes on water mass also occur. Northward 
transport volume is higher during the SEM period, resulting in changes of sea surface temperature and 
chlorophyll-a (figure 11). 
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Figure 12. Anomaly plot of a) infrared heat flux, b) sensible heat flux, c) air temperature, and d) 
transport volume estimate in 2015 

Seasonal fluctuation as mentioned above, can be seen as the effect of upwelling. Wind stress 
generates the upwelling in Maluku Sea, and induced the changes on oceanic and atmospheric variables. 
Initial condition before onset of upwelling, strong persistent southerly wind induced surface flow 
northward. This then generated the water mass transport. The initial upwelling pathway in shallow 
passage between Banggai and Taliabu Islands, possessed vacant surface layer due to transported water 
mass. This leads uplifting deeper colder water mass to replace the warmer surface transported water, 
which caused SST cooling in certain area, as shown with blue, includes the waters between Banggai and 
Taliabu Islands, to the tip of Tomini Gulf (figure 13). 

Figure 13. Schematic of upwelling process in Maluku Sea, a) initial condition and b) upwelling 
condition 

The changes can also be seen quantitatively, as upwelling alters the condition of both oceanic and 
atmospheric parameters. As the upwelling onset in June begins, strong persistent southerly wind changes 
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the wind stress magnitude. From there, northward wind-driven surface current strengthens and leads to 
water mass transport. It then alters SST, which cools down, as well as chl-a blooms. In addition to that, 
atmospheric variables also alter. These upwelling characteristics can be summarized in table 1 below. 

Table 1. Characteristics of ocean-atmosphere variables during upwelling period in 2015. 

Ocean-Atmosphere variables Range (2015) Range (Jun-Oct 2015) during upwelling period 

SST (°C) 26 –  31 26 –  28 

Chlorophyll-a (mg/m3) 0.02 – 12.10 0.98 – 12.10 

Wind Stress ((N/m2) 0 – 0.06 0.032 – 0.060 

Air Temperature (°C) 25.3 – 29.5 25.3 – 27.0 

Sensible Heat Flux (W/m2) -42 – 10 -6 – 10 

A proposed mechanism of upwelling in Maluku Sea is induced by southerly winds passing through 
Maluku Sea during the SEM period (figure 14). Wind stress shows that there is strong southerly wind 
blow during the SEM period. The wind stress generates wind-driven upwelling in western Maluku Sea. 
SST cooling and chl-a blooming are induced by the mechanism of wind-driven upwelling, the 
alongshore wind may drag the cold water from beneath the mixed layer to the surface in the Banggai tip 
waters, and from there, support phytoplankton growth in the region [4]. 

Wind intensification caused much stronger wind stress, affecting released heat flux. This causes an 
increase on seawater density, thus water mass sinks. In addition, the wind stress affects surface current 
in the mixed layer, dragging surface water mass northward. This is proposed mechanism of upwelling 
in Maluku Sea. 

Figure 14. Proposed mechanism of upwelling of Banggai waters in Maluku Sea. 

In the northern part of study area, recirculation of ITF Maluku plays a role on upwelling intensity 
during the SEM period. The existence of ITF’s second pathway and Gorontalo Sulawesi mainland shape 
deflected upwelling area to the northeast. From the tip of Tomini Gulf, the upwelling area evolves toward 
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northeast as Sulawesi mainland acts as solid boundary, as well as recirculation of ITF on the northeastern 
part of study area. Upwelling then causes SST cooling, decreasing sea level, as well as chl-a   blooming. 

3.5.  Interannual variation of upwelling intensity related to ENSO 
Analysis of monthly mean of satellite imagery and model output data sets in 2015 revealed clearly 
upwelling event off Banggai waters in Maluku Sea. Upwelling mechanism is mostly forced by the strong 
persistent southerly monsoon winds during the SEM period.  Furthermore, initial upwelling region is 
located in southern boundary of a shallow passage between Banggai and Taliabu Islands, where it is 
directly linked with northwestern Banda Sea.  It is found that upwelling event is commenced in June 
with its peak in August and is terminated in October. Ocean response to the upwelling processing is 
upwelled seawater temperature cooling with outcropped isotherm of 26 to the sea surface, chl-a 
blooming, and increased near-surface northward transport volume.  These ocean responses propagate 
northward from initial upwelling area in the southern boundary. Meridional wind stress and current 
components show similar evolution. 

In term of interannual variability, it is interesting to examine upwelling intensity during the 2015 
upwelling event in Maluku Sea and to compare with past years of upwelling intensity, since the 
occurrence of 2015 upwelling event was coincident with the interannual climate anomaly of El Nino 
Southern Oscillation (ENSO) 2015/16. The 2015/2016 El Nino event is one of the strongest on record, 
comparable to the 1982-1983 and 1997-1998 events that triggered widespread ecosystem change in the 
northeast Pacific [23].  The 2015-2016 El Nino event is categorized as super El Nino [24].  Upwelling 
intensity along the southern Java Sumatera waters was found much stronger during the El Nino year [8].  
However, study of interannual variation of upwelling in interior Indonesian seas, such as in Banggai 
waters Maluku Sea, needs to be advanced. 

Time series of standardized southern oscillation index (SOI) obtained from [22], shows ENSO events 
that appeared between 2008-2015 (figure 15a).  Positive anomaly (red) of the SOI represents La Nina 
events, while negative anomaly (blue) is for El Nino events.  The ENSO events are defined if the index 
anomaly exceeds ±2.  Over that period, there are weak La Nina 2008/2009, strong La Nina 2010/2011, 
and weak El Nino 2009/2010 and strong El Nino 2014/2015.   

Time series of anomaly of ocean-atmosphere variables (extracted from sampling box in figure 1) 
between 2008 and 2015 is shown in figure 15(b-g).  It is apparent that the variables indicate interannual 
variability related to ENSO (figure 15a), which show two major events, La Nina 2010/2011 and El-Nino 
2014/2015. Peak of La Nina can be seen in 2010 while El Nino in 2015. Anomaly of ocean-atmosphere 
variables present on figure 15(b-g), with annual mean removed to seek better understanding on 
interannual variability.  

The ocean-atmosphere variables show interannual variability, in which SST, SSH, and seawater 
temperature are well positive correlated, while meridional wind stress, salinity (0-25 m), and meridional 
current (0-25 m) are well negative correlated with SOI indices. Meridional wind stress (figure 15b) 
exhibits positive (negative) anomaly during El Nino (La Nina). The positive anomaly during El Nino 
2015 is not as significant as the negative anomaly during 2010 La Nina, but it changes to great negative 
anomaly during the end of El Nino 2015. SST shows different anomaly during La Nina and El Nino. 
During El Nino (La Nina) event, negative (positive) anomaly of SST occurs, with SST anomaly 
significantly increased as El Nino 2015 ends. Similar event shown in figure 15d of SSH, where negative 
(positive) anomaly can be seen during El Nino (La Nina), with more significant anomaly changes seen 
during El Nino 2015.  

Aside from the surface variables, oceanic parameters in the mixed layer alters as well. According to 
[13], ENSO modified the upwelling’s magnitude in Maluku Sea. The western Pacific surface 
temperature plays role on controlling monsoon, with higher (lower) surface temperatures during La Nina 
(El Nino) years, leading to stronger monsoon [19]. Stronger southeast monsoon then leads to stronger 
southerly winds in the study area. This southerly winds impact on enhanced (reduced) the wind stress 
during El Nino (La Nina), shown by positive anomaly of meridional wind stress. Thus, alters the SST 
and SSH anomaly as well. The enhanced upwelling intensity during  El Nino is indicated by the anomaly 
on mixed layer (figure 15d-g). 
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During the El Nino (La Nina) event, negative (positive) anomaly of seawater temperature (0-25 m) 
occurs. Greater anomaly can be seen during El Nino 2015. On contrary, salinity on the upper 25 m depth 
displays positive anomaly during El Nino. The increased southerly meridional wind stress during El 
Nino generates greater northward meridional current, shown by positive anomaly during El Nino 2015, 
which is much stronger in comparison with negative anomaly during La Nina. The greater meridional 
current drags surface water mass, letting a vacant area on the surface then filled with water mass from 
deeper colder water mass. The latter water mass has different characteristics, hence the increase of 
salinity and seawater temperature on the upper 25 m depth during El Nino. 

Figure 16 summarizes interannual variation of ocean-atmosphere variables, related to upwelling 
intensity, during each upwelling period from 2008-2015. In general, figure 16a shows similar variability 
throughout 2008-2015, where positive anomaly of each variables can be seen during 2010 La Nina event, 
while the strongest negative anomaly is seen during 2015 El Nino event. Less magnitude of change is 
found in air temperature, while the other three variables do not differ as much. Changes on SST as well 
as seawater temperature in mixed layer (T25m and T50m) are bigger as it is directly affected by the 
uplifting water mass during upwelling.  

Figure 15. Time-series of ENSO indices (represented by SOI indices, a) and anomaly of ocean-
atmosphere variables (b-g) in Banggai upwelling area in Maluku Sea. Note: daily ocean-atmosphere 
variables (b-g) are removed annual mean.  

During the 2015 El Nino event positive anomaly of meridional wind stress is found, which is similar 
to that meridional current component in the upper 25 m depth (V25m) (figure 16b).  During 2010 La 
Nina event, the zonal current component reaches positive anomaly while the others have the strong 
negative anomaly. For the meridional current component, it shows strong positive anomaly during 2015 
El Nino event and significantly differs from the other three variables. This may occur due to enhanced 
upwelling intensity as impacted by El Nino event. 

Table 2 summarizes anomaly of ocean-atmosphere variables during upwelling period (averaged 
between June-October) for each each year.  Upwelling intensity (UI) is also shown in the last column, 
which is defined as the sum of anomaly of 9 ocean-atmosphere variables.  As discussed previously, 
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anomaly of ocean-atmosphere variables between 2008-2015 differs significantly during 2 specific 
periods: 2010 La Nina and 2015 El Nino events (figure 15 and 16). Meridional wind component acts as 
the local forcing of the upwelling, which was very weak during La Nina event, while the strongest value 
can be seen during El Nino event. This leads to much stronger meridional current component in the 
upper 25 m depth as well.  Direction of meridional component flow southward during La Nina event, 
and in contrast, flows northward with much stronger value during El Nino 2015.  

Figure 16. Interannual fluctuation of ocean-atmosphere variables in the upwelling region (off Banggai 
waters) between 2008 and 2015.  The variables are averaged from June to October, representing 
upwelling intensity for each upwelling period; (a) air temperature (Tair), sea surface temperature (SST), 
seawater temperature 0-25m (T25m), seawater temperature 0-50m (T50m); (b) zonal wind component 
(Uwnd), meridional wind component (Vwnd), zonal current component 0-25 m (U25m), and meridional 
current component 0-25m (V25m). 

     Finally, it is evident that on interannual time-scale, fluctuation of upwelling intensity (UI) in Banggai 
waters exhibits positive anomaly (+0.27) during 2010 La Nina event, in contrast to 2015 super El Nino 
with the strongest negative anomaly of UI (-5.35) (table 2).  Thus, it can be summarized that upwelling 
intensity during the super 2015 El Nino event is the most powerful upwelling intensity, compared to 
others ENSO events between 2008-2015.  It is also shown that the weakest upwelling intensity is noted 
during the strong 2010 la Nina event.  This suggests that upwelling intensity in Banggai waters are 
significantly impacted by external factors such as ENSO. 

Table 2. Anomaly of ocean-atmosphere variables associated with Upwelling Intensity (UI). Each 
variable is averaged between June and October for each upwelling period. 

Year Tair SST SSH uwind vwind T25m S25m U25m V25m 
Upwelling
Intensity

2008 -0.791 -0.355 0.003 -0.003 0.013 -0.220 -0.019 -0.020 -0.035 -1.43 

2009 0.082 -0.623 -0.040 0.003 0.024 -0.499 0.317 -0.115 0.033 -0.82 

2010 -0.302 0.346 0.025 -0.003 0.001 0.231 -0.045 0.053 -0.033 +0.27

2011 -0.526 -0.877 -0.043 -0.009 0.021 -0.842 0.107 -0.065 0.008 -2.22 

2012 -0.696 -0.779 -0.018 0.004 0.027 -0.665 0.238 -0.134 0.019 -2.00 

2013 -0.443 -0.408 0.021 0.005 0.021 -0.284 0.051 -0.076 0.018 -1.10 

2014 -0.550 -1.169 -0.072 0.006 0.028 -1.215 0.233 -0.075 0.080 -2.73 

2015 -0.767 -2.335 -0.144 0.006 0.028 -2.486 0.291 -0.066 0.124 -5.35 
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4.  Conclusion 
From satellite imagery data, upwelling event is indicated by SST cooling in June in southern boundary 
where it extends northward, and terminates in October.  The lowest SST (<26°C) is found in September.  
The cooling episode is followed by chl-a blooming one-month later from July to October.  Concentration 
of surface chl-a reaches its maximum in August (>1 mg/m3).  Generating mechanism of upwelling in 
the study area is forced by strong and persistent southerly monsoon winds stress that exists from June to 
October during the Southeast monsoon (SEM) period.  Following upwelling theory, in high-latitude 
southern hemisphere, southerly winds stress drag surface water northward and Ekman drift deflected to 
the left from the wind direction.  However, since the study area is just over the equator, then the Coriolis 
effect may be neglected.  So that the Ekman drift must be similar to the wind direction.  This "special 
coastal-equator upwelling case" can be proven from surface circulation pattern, where the current 
vectors flow quasi-northward along the eastern Banggai Waters.  

During upwelling episode, northward transport volume is drastically increased from surface to about 
60 m depth.  Shallow passage between Banggai and Taliabu Islands provides an initial upwelling region, 
where dragged warm surface water is replaced by upwelled colder water from sub-surface (80 m depth) 
layer.  The upwelling area then evolves northward. Recirculation of Maluku ITF in southern boundary 
may contribute to the northward flow of upwelling. Vertical section of seawater temperature shows that 
during upwelling episode, isotherm of 26°C is outcropped to the sea surface. In contrary, during non-
upwelling (the NWM period) this 26°C isotherm lies deeper at 80 m depth and temperature of 28-29°C 
is dominant at surface.  Ocean-atmosphere variables changes in response to the upwelling event. 

On interannual time-scale related to ENSO between 2008-2015, the most powerful upwelling 
intensity in Banggai waters was revealed during super El Nino 2015 with index of (-5.35), in contrast to 
weak upwelling intensity during strong La Nina 2010 (+0.27).  Hence, Pacific origin of ENSO controls 
significantly on physical processes and dynamics of upwelling in the study area. 
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