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Abstract. Eddies kinetic energy (EKE) is one of the most indicators in observed the phenomena 
of upwelling and down welling generated by circular current or eddies. This research aims are to 
determine the characteristics and intensity of eddies and EKE and its relation to the distribution 
of yellowfin tuna (Thunnus albacares) in Southern Java Indian Ocean. Based on Automated 
Eddies Detection (AED) method, it is succesfully discovered many eddies well formed in 
Southern Java Indian Ocean through 2014. Furthermore, EKE has a vary values to the depth, 
which tends to be higher at the surface layer than at thermocline layer. EKE in this region display 
a distinct seasonal cycle with maximum occurred in Southeast Monsoon and minimum in 
Northwest Monsoon. Increasing of EKE in Southeast Monsoon tend to be affected by currents 
system of Indonesian Throughflow (ITF) and South Equatorial Current (SEC). The highest of 
yellowfin tuna catches found in June 2014 and occurred in the current system with high EKE 
intensity. Correlation between eddies and yellowfin tuna found at thermocline layer (109 m) and 
occurred in cyclonic eddies (R2 = 0.59). 

1. Introduction 
Indonesian archipelagos link the Pacific and Indian Oceans and play a crucial role in global ocean 
thermohaline circulation [1]. Furthermore, Tropical Indian Ocean interaction with the atmosphere plays 
an important role in shaping climate on either regional or global scales [2]. There are unique ocean 
currents that flow seasonally through Indian Ocean, among others are the Indonesian Throughflow (ITF) 
which links Pacific and Indian Ocean [3], the South Java Current (SJC) which flows along the south 
Java coast [4], and the South Equatorial Current (SEC) which flows westward from western Indian 
Ocean [5]. Despite this importance, many aspects of upper ocean dynamics are still unknown, especially 
of different types of motion and scales. Upper ocean variability is characterized by eddies, mostly 
geostrophic and generated by instabilities of ocean currents [6]. Eddies are important because it have so 
much kinetic energy, as well it is responsible for the irreversible mixing of waters with different 
properties. Eddies have a deep roots and can carrying energy and momentum to the seafloor [7]. 

Eddies are generally more energetic than the surrounding currents and are an important component 
of dynamical oceanography at all scales [8]. The fact that both cyclonic and anti-cyclonic eddies may 
embody either upwelling or downwelling in their centres [9]. Note: In Southern Hemisphere, “cyclonic 
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eddies” rotate clockwise and “anti-cyclonic eddies” rotate counter clockwise (figure 2; red and black 
circles represent cyclonic and anticyclonic), vice versa in Northern Hemisphere. When cyclonic eddies 
occurred there may be nutrients in abundance, hence of the mixing water mass from bottom layer to the 
upper layer. This nutrient might be supports living organism through food chain start from plankton, 
small fish, up to pelagic fish, for instance tuna [4]. Tuna (Thunnus.sp) has a very high economic value 
in the world market. Hence, it is the most important fishery resources targeted by fisherman from various 
countries including Indonesia, also it is an important food source in the world [10].  

In detection of eddies formation, a few method have been proposed, based either on the physical or 
geometrical characteristics of the flow field [11]. For instance by [12] using the higher resolution Sea 
Surface Height (SSH) fields afforded by the merged T/P and ERS-1 and ERS-2 satellite datasets, then 
by [13] using Sea Level Anomaly (SLA) maps from the multi satellite AVISO - product. Moreover, 
mesoscale eddies activities have been studied in the Eastern Indian Ocean associated with the South 
Equatorial Current (SEC). In Indian Ocean a high Eddies Kinetic Energy (EKE) intensity (around 150 
to 250 cm2/s2) can be found around 25oS extending westward from the Australian coast (figure 1) [14]. 
In Indian Ocean, there are several researches about eddies has been done. For instance by [14] about the 
formation and mechanism of eddy kinetic energy; by [15] about eddies variability and the oceanography 
characteristics at eddy centre; and by [16] which clearly clarify eddies mechanism in the South-eastern 
Tropical Indian Ocean.  

Most of eddies studies in Indian Ocean are focused on the sea surface and little is known about the 
impact on the fisheries, specifically to tuna catches [17]. In this paper, we apply an oceanography data 
based on NEMO Model to study eddies structures and its association with tuna catches. In detection 
eddies formation, here we use the automatic eddies detection algorithm for the high-resolution numerical 
product developed by [11]. First of all, eddies data is set up by identifying cyclonic and anti-cyclonic 
eddies from the numerical product and then statistical analysis is applied. This paper is composed of five 
sections: Section 2 describes the physical oceanography model from NEMO Model through INDESO – 
KKP Project. Section 3 clearly identified eddies characteristics and intensity of EKE. Section 4 
emphasizes a series of statistical analysis is applied to compute the coefficient correlation of eddies with 
tuna catches data from LPPT Benoa, Bali. Section 5 concludes the paper with summary. 

Figure 1. Global EKE (cm2/s2) calculated from the 15 years SLA [11]. 

2. Data 
The data used in this study, including u and v components of sea current at two vertical level, which 
represents surface layer (mixed layer depth) at 5 m depth and thermocline layer at 109 m depth. This 
was generated by Nucleus for European Modeling of the Ocean (NEMO) Model through Physical Ocean 
Model of Infrastructure Development for Space Oceanography (INDESO) Project KKP [18]. INDESO-
Project KKP is a collaboration project between Indonesia and France to improve the institutional 
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capacity and human resources of oceanographic operational systems. Oceanographic data service has 
been running since 2014 through www.indeso.web.id [19]. 

NEMO model is a numerical simulation of the ocean. It have three components, which are: “blue-
ocean” NEMO-OPA simulates the dynamics; the “white-ocean” NEMO-LIM simulates the sea-ice; and 
the “green-ocean” NEMO-TOP simulates the biogeochemistry [20]. The ocean physical model used for 
the INDESO projects is a regional configuration of the NEMO-OPA. These model is forced at the 
surface using 3-hourly ECMWF atmospheric analysis and forecast fields. [21]. 

The operational INDESO Physical Ocean Model system has a 1/12o or 9.25 km x 9.25 km horizontal 
resolution and 50 vertical layers with increased resolution near the surface, also provides 10 days of 3D 
ocean forecast with updated weekly. This product includes daily mean fields of atmospheric fluxes, 
physical parameters (temperature, salinity, currents, sea level), hourly surface variables (SST, SSH, 
currents), as well as hourly values of all fields at selected mooring sites and validation metrics [18]. The 
NEMO 2.3 version was used in INDESO Project and has been developed at Mercator-Ocean. This 
regional ocean physical model provides physical fields for the past two weeks (forced by a global 2-
weeks analysis) and ocean forecast (forced by a global 10-day forecast) for the next 10 days [21]. 

 
3. Seasonal Cycle of Eddies and EKE Variation  

3.1. Eddy Variation and Characteristic 
In detection of eddies occurrences was using the automatic eddy detection algorithm developed by [11]. 
This method can be applied to any velocity field and also has been validated by [11]. Basically the 
method was based on eddies characteristics, such as for the minimum velocities were indicates in the 
proximity of the eddy center, and the velocity values that increase gradually linear from its center up to 
reach the maximum near the edges. Furthermore, four constraints were defined on this method to 
identifying eddies occurrence based on the characteristics of eddy velocity fields, which: (i) along east-
west section, meridional velocity (V) has to reverse in sign across the eddy center and its magnitude has 
to increase away from it; (ii) Along north-south section, zonal velocity (U) has to reverse in sign across 
the eddy center, and its magnitude has to increase away from it; (iii) the velocity magnitude has a local 
minimum at the eddy center; and (iv) around the eddy center, the directions of the velocity vectors have 
to change with a constant sense of rotation [22].  

Based on automatic eddies detection it is found in Southern Java Indian Ocean mostly generated by 
cyclonic eddies rather than anticyclonic. In total of 474 cyclonic and 442 anticyclonic, found 192 
cyclonic and 181 anticyclonic at the surface layer; as well at the thermocline found 282 cyclonic and 
261 anticyclonic eddies. Generally cyclonic eddies mostly occurred during northwest season (at surface 
layer) and southeast season (at thermocline layer); meanwhile anticyclonic mostly occurred during first 
transition season (at surface layer) and second transition (at thermocline layer) [22]. From figure 2a there 
were two coloured circles, which are indicates red circle as a cyclonic eddy and black circle as an 
anticyclonic eddy. During northwest season (figure 2a), eddies dominantly generate in the Southern 
Indian Ocean along 16 – 20oS, and there were several eddies occurred along the western Sumatera coast 
and reach to Southern Java. These eddies might be generated due to high shear velocity of SJC. As we 
can see in figure 2a, SJC flows eastward dominantly along the region with a strong velocity (red arrow) 
around 0.4 – 0.6 m/s. On the southeast season (figure 2b) the existence eddies near western Sumatera 
coast and southern Java decrease due to the weakness of SJC during this season. However, as seen in 
the figure 2b there were cyclonic eddies that existence in the southern coast Java during this season. This 
cyclonic eddies suggested was developed by the stronger ITF current system that flowing south-
westward in this region [23]. Furthermore, from figure 2b showed that SEC current system flowing 
westward with a strong intensity (0.5 to 0.9 m/s). So thus, during southeast season eddies existences 
were moving southward to the offshore hence of the high intensity of SEC and ITF.   

Eddies formation in the Southern Java Indian Ocean is not only generated by local wind but also by 
the remote forcing that generates SEC, ITF, and SJC [16]. The seasonally current flow in Southern Java 
Indian Ocean play an important role in eddies formation [24]. Thus, in the open ocean, mesoscale eddies 
that generate by the wind stress is not likely to be effective rather than by current flow pattern [9]. The 
mesoscale cyclonic eddies mostly appeared along the SJC current system near the southwest Sumatera 
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coast to the southern Java, whereas the anticyclonic eddies mostly appear in the south of SEC current 
system. Occurrences of anticyclonic eddies also presumed generated by propagation of Rossby waves. 
Total eddies formation at two vertical layers predominantly rich at thermocline layer rather than surface 
layer. It is might be due to the high intensity of shear velocity at this depth, [23] stated that the eastward 
currents (SJC) form a large vertical shear in the depth range from 100 to 300 m in contrast with the 
westward current which is homogenized in the upper 300 m [24]. Furthermore, there were other factors 
in generating eddies vertically for instance local wind, topography, and propagation of Kelvin and 
Rossby waves. 

 

 
Figure 2. Eddies spatial distributions at surface layer in: a) Northwest Season and b) Southeast Season. 
 

Histogram of eddies sizes at surface and thermocline layers are shown at figure 3. Both at surface 
and thermocline layers there are more cyclonic than anticyclonic eddies. The peak number at surface 
layer is located about 50 – 80 km, but for cyclonic eddies the frequencies may reach to 90 km. Whereas, 
at thermocline layer eddies sizes is greater than at surface layer, here the peak number is about 60 – 100 
km. It has a similar results with what [25] found using surface satellite-tracked drifter data, which more 
sub-mesoscale eddies are densely over the entire Southern Indian Ocean (100 km > r > 60 km). Greater 
diameter at thermocline layer, presumed that eddies in this layer has a stronger intensity than at surface 
layer, which might be due to the high intensity of shear velocity at this depth as argued above. 

The spatial distribution of eddies sizes is plotted at figure 4. Generally, eddies with larger diameter 
mostly found in the southern of Indian Ocean along 10o – 15oS. The spatial distribution of mesoscale 
cyclonic and anticyclonic eddies were different. As for the mesoscale anticyclonic eddies dominantly 
appears at the SEC pathways; whereas the mesoscale cyclonic eddies rich in the SJC pathways. It is 
consistent with [16] that mostly cyclonic eddies appears at the southern part of east Java coast; and for 
anticyclonic eddies at the south of SEC that flow westward, which are also as a part of Rossby waves. 
In the western Sumatera coast and southern Java, the shape of large eddies is restrained by difference in 
the velocity of SJC and the weaker currents around it as well as the morphology [16]. Furthermore, the 
submesoscale eddies generally occur below 15oS. It is consistent with [25] that medium eddies have a 
similar spatial distribution to that of large eddies but occur in a wider area. As well mention that the 
submesoscale eddies are densely distributed over the entire Indian Ocean, and for the appearance of 
submesoscale anticyclonic eddies might be due to the drifter aggregation maintained by converging 
Ekman currents.  

a) b) 

SEC

ITF 

SJC 
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Figure 3. Histogram of eddies sizes at: a) surface layer; and b) thermocline layer; Positive (negative) 
eddy sizes represents cyclonic (anticyclonic) eddies.     

 
Figure 4. Eddies sizes distribution (km) at: a) cyclonic eddies; and b) anticyclonic eddies. 

 
3.2. Seasonal Cycle of EKE Intensity 
The EKE value is computed based on velocity components using the classical relation as follows: 

EKE = �
�
���� ����	 [8] 

 
Where U and V are the zonal and meridional velocity components. 

The EKE maps in the Southern Java Indian Ocean at four different seasons can be seen in figure 5. 
As shown in figure 5, EKE displays a distinct seasonal cycle with a maximum during southeast season 
(JJA) and 2nd transition season, and for a minimum during northwest season (DJF). The highest EKE 
(around 0.5 to 0.9 m2/s2) dominantly occurred along the ITF pathway near the Lombok Strait and in the 
south of SEC pathway along 12oS. It is might be indicating moderate and intensive eddies activity over 
these regions. To further demonstrate the EKE seasonal cycle, we compute time series of EKE averaged 
and maximum value. Seasonal variations can be clearly identified, with a mean EKE of 0.03 m2/s2, a 
maximum of 1.52 m2/s2 in September; and a minimum around 0.02 m2/s2 in December. [14] suggested 
that the seasonal variations of EKE in the southeast Indian Ocean are predominantly regulated by 
baroclinic instability associated with the mean flows. Moreover, [14] states that there is phase about 2-
4 months for the vertical shear precedes the EKE variation. This indicates that due to the peak ITF signal 
in April through July and the maximum occurs in early June [26], then the EKE values reach its 
maximum in September. As well the high EKE signal during September also generated by instability 
currents system of SEC. [27] state that SEC flows throughout the year and have a strong intensity in the 
southeast season along 10o – 20oS [24]. This results also similar with [14] where the seasonal modulation 
of EKE in Southeast Indian Ocean is mediated by baroclinic instability associated with the underlying 

a) 

b)a) 

b
) 
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westward-flowing SEC system and the surface eastward-flowing South Indian Ocean Countercurrent 
(SICC). 

The mean EKE at cyclonic (anticyclonic) eddies centers could be calculated in the Southern Java 
Indian Ocean at surface layer giving average EKE 0.010 (0.012) m2/s2, and at thermocline layer giving 
average EKE 0.555 (0.313) m2/s2. From figure 6 can be seen the seasonal cycle of EKE at eddies centers. 
Generally, for both layers the cyclonic eddies have a larger EKE than anticyclonic. In the surface layer, 
EKE at cyclonic eddies reach its maximum on October, whereas the anticyclonic have a peak on 
November. However, in the thermocline layer larger EKE at cyclonic eddies found on June to October, 
while the anticyclonic on March and May. The high modulation of EKE at cyclonic eddies that occurred 
during southeast and 2nd transition season are mediated by geostrophic currents instability of SEC and 
ITF system. As argued above, that EKE modulation in this region is predominantly restrained by the 
instability mean flows of ITF and SEC. Furthermore, the results indicate that eddies in the thermocline 
layer has a higher intensity than in surface layer. As well the cyclonic eddies have a greater intensity in 
transporting water mass than anticyclonic. It is consistent with [28] that the energy of the downwelling 
generated by anticyclonic eddies tend to be weak. 

 

 
Figure 5. Seasonal distribution of EKE in: a) Northwest Season (Dec – Feb [DJF]); b) 1st Transition 
Season (Mar – May [MAM]); c) Southeast Season (Jun – Aug [JJA]); and d) 2nd Transition Season (Sep 
– Nov [SON]). 
 

a) b) 

c) d) 
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Figure 6. Mean seasonal of EKE at eddies centers. 

4. Eddies and Yellowfin Tuna Catches
In analyse eddies and its association with the yellowfin tuna, we overlay eddies plot with the tuna 
catches, then used a statistical method which is Pearson’s Correlation [22]. This correlation is to measure 
the strength of the association between two variables. Here we only compute the correlation for the 
thermocline layer, this refers to the yellowfin tuna catches data that predominantly appears in this layer 
[17]. The yellowfin tuna catches ware obtained from observation data by Loka Penelitian Perikanan 
Tuna (LPPT) Benoa in 2014 using a tuna longline. These tuna catches data represents as a frequency 
number of tuna caught in each month. The yellowfin tuna catches data can be seen on table 1. 
 

Table 1. Yellowfin Tuna Catches on 2014. 
 

Month Yellowfin Tuna Catch
January 1 
February 0 
March 6
April 6 
May 7 
June 48 
July  15 
August 1 
September 0
October 3 
November 2 
December 0 

 
Based on the yellowfin tuna catches data, found the highest tuna catches was on June 2014; whereas 

the lowest on January 2014 [22]. Meanwhile, on February, September, and December no tuna catches 
were found. This is might be due because of the ships were not operated during these months. The 
overlay between eddies and tuna catches can be seen on figure 7 with the total of tuna caught represent 
as a yellow circle. On June 2014 (figure 7) yellowfin tuna catches found along in the edges either 
cyclonic or anticyclonic eddies. The yellowfin tuna distribution in this region probably due to the 
downwelling and upwelling generated by eddies. [9] mention that in the types of eddies where upwelling 
and divergence; downwelling and convergence often occur near the edges or in eddies outer edges. Thus, 
eddies motion in the ocean yield rich nutrients and further can support fisheries. Otherwise, yellowfin 
tuna catches not always found near in the edge of eddies. This indicates that there were other 
oceanographic parameters which are more influence on the abundance and distribution of yellowfin 
tuna, such as sea surface temperature, fronts, and depth of thermocline [29]. 



8

1234567890 ‘’“”

MSTBIHO IOP Publishing

IOP Conf. Series: Earth and Environmental Science 176 (2018) 012004  doi :10.1088/1755-1315/176/1/012004

As the results of Pearson’s Correlation found the highest correlation is in the cyclonic eddies (r = 
0.59) rather than anticyclonic eddies (r = 0.14). A highest correlation between cyclonic eddies and 
yellowfin tuna might be due to the fishery abundance, hence the mixing water mass from bottom layer 
to upper layer [22]. Therefore, nutrients from bottom layer will be rising up and might be generated the 
primary productivity [17]. Furthermore eddies presumably localize tuna forage and then create a good 
feeding opportunity [30]. Moreover, the primary production increased within cyclonic rings in the 
Southern Hemisphere. The Coriolis effects force deflects water movement to the left away from the eddy 
center, and thus the depth of thermocline would be decreases and nutrients-rich waters closer to the 
surface layer and increasing primary production [31]. 

  Based on the Pearson’s correlation between EKE at eddies center and yellowfin tuna also found the 
highest correlation on the cyclonic eddies (r = 0.37). Strong correlation on EKE at cyclonic eddies is 
due to the larger EKE at this type rather than at anticyclonic eddies. This result also shows that EKE 
distribution has an influence in distribution of yellowfin tuna, besides the oceanographic parameters as 
mentioned above. Predominantly yellowfin tuna distributed in the area with the larger EKE. Moreover 
[32] state that high yellowfin tuna catches were most likely in locations where the surface ocean 
characteristics were: increased current shear (EKE), relatively shallow MLD [22], and increased of 
phytoplankton concentrations. [30] also found the association between EKE and other tuna species, 
where large catches of albacore were mostly concentrated in area with relatively high EKE and 
geostrophic velocities. This suggests that tunas are associated with eddies fields. 

 
 

Figure 7. Eddies spatial distribution and yellowfin tuna catches. 

5. Conclusion
Eddies appearances have been investigated by using the automatic eddies detection algorithm for the 
high resolution numerical product at two vertical layers in Southern Java Indian Ocean. In total of 916 
eddies were detected, among 192 (181) are cyclonic (anticyclonic) eddies at the surface layer; as well at 
the thermocline 282 (261) are cyclonic (anticyclonic) eddies. 

Predominantly for cyclonic eddies appear in the northwest season, whereas anticyclonic eddies 
appear in the 1st and 2nd transition season. These cyclonic and anticyclonic eddies appearances tend to 
followed the pattern of shear velocity current along in the Indian Ocean. As for the cyclonic eddies 
dominantly appear when a high intensity of SJC occurred. Meanwhile for the anticyclonic eddies suggest 
were associated with the appearance of SEC current system, as well with other forcing like Rossby wave. 
In addition, other local or nonlocal processes including local wind stress, kelvin waves, and topography 
may also modulate the activity of eddies in the Southern Java Indian Ocean. 

Mesoscale cyclonic (anticyclonic) eddies populate along the SJC (SEC) system current, along 10oS 
(15oS). The spatial distribution of mesoscale eddies corresponds to the large EKE region. The EKE in 
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this region shows a dis.tinct seasonal cycle with a maximum during southeast season (with maximum 
1.52 m2/s2), and for a minimum during northwest season (with maximum 0.39 m2/s2). It is found that 
this seasonal modulation of EKE is mediated by the vertical velocity shear associated with the SEC and 
ITF currents system. Furthermore, by using the mean EKE as a background the mean EKE at eddies 
centers could be calculated. For cyclonic (anticyclonic) eddies at surface layer giving average EKE 0.010 
(0.012) m2/s2, and at thermocline layer giving average EKE 0.555 (0.313) m2/s2. These results indicate 
that eddies in the thermocline layer has a higher intensity, as well the cyclonic eddies have a greater 
intensity in transporting water mass rather than anticyclonic eddies.  

By overlying and using Pearson’s Correlation the association between eddies, EKE, and yellowfin 
tuna have been investigated. It is found that the yellowfin tuna catches not constantly found along eddies 
formation. Otherwise, the cyclonic eddies have a higher correlation (r = 0.59) with the yellowfin tuna 
rather than anticyclonic eddies. It is might be due to the nutrients in abundance in the cyclonic eddies, 
hence the mixing of water mass from bottom layer to the upper layer. As well for the EKE at cyclonic 
eddies center also has the highest correlation with yellowfin tuna (r = 0.37). 
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