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Abstract. The multipole method was first developed by Ursell [1]. His method consists of the 

superposition of potential functions that satisfy the Laplace equation, the free-surface boundary condition, and the 

condition at infinity. The potential functions represent a source and horizontal dipole at the origin, which give the 

radiated waves at infinity, and a series of multipoles that die off rapidly as one moves away from the origin. The 

strengths of the source, dipole and multipoles are all determined so that the body boundary condition is met. Ursell 

used this method to solve the problem of a heaving circular cylinder. For sections that are not circular in shape, 

conformal mapping is used. 

In the multipole method, the mapping function that transforms the ship section into a semi-circle is found. 

The mapping function can then be used in conjunction with Ursell’s known solution for a circular cylinder to find 

the solution for the actual ship section. 

The difficulty in the technique is to determine the proper mapping function for each cross section. Various 

methods have been proposed to find this mapping function. The most common mapping uses the so-called Lewis-

forms [2], [3] and [4]. 

It is recognized that this method gives smooth solutions over all frequency range (no irregular frequencies). 

On the other hand, sharp corners are not well represented, and sections with very low sectional area coefficient 

may not be well represented as well. Even though, for first rough estimates in initial stages of ship design, this 

method may give results that agree reasonably well with the other more computational demanding methods, in 

terms of order of magnitude and trend. 

Considering the difficulty to find good charts of the Lewis forms data – to the best of our knowledge, the 

best known are those published by Bhattacharyya [5] - and even more difficult to find the data in digital form. The 

main purpose of this work is to present a computational method of computing the data given through the Lewis 

forms and apply it to naval ship sections in order to find rough estimates of the hydrodynamic coefficients in heave. 

1.  Introduction 

One of the areas of Ocean Engineering and Naval Architecture of extreme importance is seakeeping, as 

well as its ability to maneuver in the aquatic environment, allowing us to obtain a forecast of the ship's 

hull behavior in waves in its coupled six degrees of freedom. As a consequence of this, the study of ship 

dynamics has been traditionally separated into two main areas [6]: 

 

 Manoeuvring or controllability in calm water and 

 Seakeeping or vessel motion in a seaway. 
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With regard to seakeeping, there are a huge number of methods that can be applied, ranging from 

simple two-dimensional linear numerical methods in frequency or time domain, such as Strip Theory, 

to advanced nonlinear methods such as Computational Fluid Dynamics (CFD). Both methods have 

advantages and disadvantages. Although the Strip Theory is simpler and considers certain assumptions 

(e.g., the flow is 2D and the fluid is inviscid), it continues to have results with good precision enough 

for initial stage design and in which the computational effort is not so demanding, being possible to 

obtain them with computers with less effort and faster [7]. 

The 2D methods using a Strip Theory to find the ship’s response in seaway need as one of the inputs 

the hydrodynamic coefficients to solve the equations of motion. From the several methods available 

today, the most used is the panel method 2D/3D. However, other less computational, time a cost 

demanding methods are still possible to use, at least for first rough estimates.  

The multipole method was first developed by Ursell [1]. His method consists of the superposition 

of potential functions that satisfy the Laplace equation, the free-surface boundary condition, and the 

boundary condition at infinity, and the body boundary condition. The potential functions represent a 

source and horizontal dipole at the origin, which give the radiated waves at infinity, and a series of 

multipoles that die off rapidly as one moves away from the origin. The strengths of the source, dipole 

and multipoles are all determined so that the body boundary condition is met. Ursell used this method 

to solve the problem of finding the hydrodynamic coefficients for a heaving circular cylinder. For 

sections that are not circular, conformal mapping has been used. 

In Ursell’s multipole method, a mapping function that transforms the ship section into a semi-circle 

is found, which can then be used in conjunction with Ursell’s known solution for a circular cylinder to 

find the solution for the actual ship section. 

The difficulty in the technique is to determine the proper mapping function for each cross section. 

Various methods have been proposed to find this mapping function. The most common mapping uses 

the so-called Lewis forms [2], [3] and [4]. 

It is recognized that this method gives smooth behaviour of the solutions over all frequency range. 

On the other hand, sharp corners are not well represented, and sections with very low sectional area 

coefficient may not be well represented as well. Even though, for first rough estimates in initial stages 

of ship design, this method may give results that agree reasonably well with the other more 

computational demanding methods, in terms of order of magnitude and trend. 

Nowadays it is difficult to find good published charts with Lewis form’s data. The best known are 

those published by Bhattacharyya [5], which are difficult to read and convert reliably. 

2.  Ship Dynamics 

Regarding the dynamic analysis of seakeeping, certain simplifications need to be accounted: the ship 

will be considered a rigid body with small amplitudes motions. 

2.1.  Motions and Reference Frame 

It is necessary to predict the vessel´s translational (surge, sway and heave) and rotational (roll, pitch 

and yaw) motions. These motions are considered as being six degrees of freedom, as is shown in 

Figure 1. 
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Unfortunately, there is no universal coordinate system accepted in the literature of the behavior of the 

ship at sea. Thus, taking into account the main linear numerical method in the frequency domain applied 

to linear waves (Strip Theory), two coordinate systems are normally used [8]: 

 The ship-fixed system (non-inertial system) 𝑥, 𝑦, 𝑧, with axis pointing from amidships 

forwards, to starboard and towards the keel. In this system, the center of gravity of the ship 

is independent of the time 𝑥𝑔, 𝑦𝑔, 𝑧𝑔; 

 The Earth-fixed system (inertial system) 𝜉, 𝜂, 𝜁, which follows the constant movement of the 

vessel with velocity 𝑉 = √𝑢2 + 𝑣2, dependent on the quasi-velocities in surge – 𝑢, and sway 

– 𝑣. 

It should be noted that, in seakeeping, the coordinate system used is usually the inertial system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.  Linear Equations of Ship Dynamics in Regular Waves 

The prediction of a ship's response in seaway, the seakeeping, is a complex process, involving the 

interactions between the ship's own dynamics and the surrounding hydrodynamic forces. Knowing the 

Figure 1. Six degrees of freedom of movement of the ship [6]. 

Figure 2. Seakeeping coordinate systems [9]. 



4

1234567890 ‘’“”

4th International Scientific Conference SEA-CONF 2018 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 172 (2018) 012023  doi :10.1088/1755-1315/172/1/012023

ship's responses in regular waves for different frequencies, we can predict its behavior for several sea 

states. 

The general form of the linearized equations of ship dynamics in the six degrees of freedom, or in 

other words, the Euler equations of ship motion used in the literature devoted to seakeeping, using the 

fixed axes on the ship can be described as follows [9]: 

 

                                                

∑ 𝛥𝑗𝑘

6

𝑘=1

𝜂̈𝑘(𝑡) = 𝐹𝑗(𝑡)      𝑗 = 1,2…6 

 

(1) 

 

where: 

𝛥𝑗𝑘 – the inertia matrix components of the ship, such as mass and moment of inertia; 

𝜂̈k – the accelerations in mode k; 

𝐹𝑗 – the sum of the forces and moments acting on the body in the direction 𝑗; 

and Fj 𝑎re harmonic functions in the time base. 

 

Linearizing equation (1), certain terms in 𝛥𝑗𝑘 may be considered zero, as shown by [10], which for 

a ship with lateral symmetry [9], this equation can be reduced to the following six equations relating to 

the six degrees of freedom: 

 
                                                          

𝛥(𝜂̈1 + 𝑧𝑐𝜂̈5) = 𝐹1 

𝛥(𝜂̈2 − 𝑧𝑐𝜂̈4 + 𝑥𝑐𝜂̈6) = 𝐹2 

𝛥(𝜂̈3 − 𝑥𝑐𝜂̈5) = 𝐹3 

𝐼44𝜂̈4 − 𝐼46𝜂̈6 − 𝛥𝑧𝑐𝜂̈2 = 𝐹4 

𝐼55𝜂̈5 + 𝛥(𝑧𝑐𝜂̈1 − 𝑥𝑐𝜂̈3) = 𝐹5 

𝐼66𝜂̈6 − 𝐼64𝜂̈4 + 𝛥𝑥𝑐𝜂̈2 = 𝐹6 

(2) 

 

where: 

𝐹𝑗(𝑡), 𝑗 = 1,2,3 - the sum of the forces in the directions 𝑥, 𝑦, 𝑧 respectively; 

𝐹𝑗(𝑡), 𝑗 = 4,5,6 – the sum of the moments acting on the 𝑥,𝑦 and 𝑧 axes, with the positive moment 

following the right hand rule; 

𝛥 - the total mass of the ship; 

𝐼𝑗𝑗 , 𝑗 = 4,5,6 – the moments of inertia about the 𝑥,𝑦 and 𝑧 axes, respectively; 

𝐼46 - the product of inertia between the degrees of freedom roll-yaw= 𝐼64; 
(𝑥𝑐 , 0, 𝑧𝑐) – the coordinates of the center of gravity of the ship in the non-inertial system 𝑥, 𝑦, 𝑧; 

𝜂̈𝑗(𝑡) – the acceleration in the degree of freedom 𝑗, in the system with the fixed axes in the ship, referring 

to 𝑗 = 1, 2, 3, 4, 5, 6 the surge, sway, heave, roll, pitch and yaw, respectively. 

 

Comparing the equations (1) and (2) it is possible to write the inertia matrix 𝛥𝑗𝑘 as: 
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[
 
 
 
 
 

𝛥 0 0 0 +𝛥𝑧𝑐 0
0 𝛥 0 −𝛥𝑧𝑐 0 +𝛥𝑥𝑐

0 0 𝛥 0 −𝛥𝑥𝑐 0
0 −𝛥𝑧𝑐 0 𝐼44 0 −𝐼46

+𝛥𝑧𝑐 0 −𝛥𝑥𝑐 0 𝐼55 0
0 +𝛥𝑥𝑐 0 −𝛥𝑥𝑐 0 𝐼66 ]

 
 
 
 
 

 (3) 

 

Taking into account the following assumptions [9]: 

 Considering only the gravitational and fluid forces acting on the ship; 

 Taking into account the linear theory, the ship's responses will be directly proportional to the 

wave amplitude, occurring at the frequency at which the ship suffers the incident waves; 

 Considering only the ship's response in sinusoidal waves, the time-dependent responses of the 

vessel 𝜂𝑗(𝑡) will be sinusoidal at a given encounter frequency 𝜔𝑒 being represented by: 𝜂𝑗(𝑡) =

𝜂̅𝑗𝑒
𝑖𝜔𝑒𝑡    𝑗 = 1,2…6; 

o where 𝜂̅𝑗 is the amplitude of the response of the ship in the direction 𝑗. 

 The pressure around the hull can be obtained from the Bernoulli equation; 

 The hydrostatic and hydrodynamic forces acting on the ship are obtained by integrating the fluid 

pressure along the surface of the submerged surface of the hull of the ship S (assuming the 

inviscid and irrotational flow, which allows the linear theory to be applied); 

 The hydrodynamic forces resulting from the radiation problem involve the added mass and 

damping coefficients. 

 𝐹𝑗
𝐼 is the complex amplitude of the excitation force component due to the incident waves, 

commonly called the Froude-Krylov excitation force; 

 𝐹𝑗
𝐷 is the complex amplitude of the excitation force component due to the diffracted waves, 

called the diffraction excitation force. 

 

Then, equation (1) results in the following expression: 

 
   

∑[−𝜔𝑒
2(𝛥𝑗𝑘 + 𝐴𝑗𝑘) + 𝑖𝜔𝑒𝐵𝑗𝑘 + 𝐶𝑗𝑘]

6

𝑘=1

𝜂̅𝑘 = 𝐹𝑗(𝑡) = 𝐹𝑗
𝐼 + 𝐹𝑗

𝐷   𝑗 = 1, 2…6   

  

(4) 

 

where: 

𝐴𝑗𝑘 - the added mass coefficients in dof j due to motion in dof k; 

𝐵𝑗𝑘 - the damping coefficients in dof j due to motion in dof k; 

𝐶𝑗𝑘 - the hydrostatic restoring force coefficients in dof j due to motion in dof k; 

𝐹𝑗
𝐼 + 𝐹𝑗

𝐷 - the two components of the amplitude of the excitation forces acting on the ship. 

2.3.  Hydrodynamic Loads 

Applying Strip Theory, and to simplify the concepts discussed so far, the three-dimensional (3D) 

problem is reduced to a two-dimensional (2D) problem by dividing the hull into several two-dimensional 

vertical sections along the length of the ship, each strip having a constant cross-section [7] and a flow 

that do not interferes longitudinally with the adjacent strip flow. Subsequently, some restrictions will be 

presented that need to be considered in applying the Strip Theory. 

A common approach in the calculation of hydrodynamic loads can be made by dividing the 

hydrodynamic problem into two sub-problems [7]: 
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 Sub-problem A: The movement of the ship when exposed to incoming waves is predicted. In 

this sub-problem, the Froude-Krylov and the diffraction forces and moments of the wave 

excitation are computed.  

 Sub-problem B: The incoming waves are not considered. In this sub-problem, we postulate that 

the ship is moving in its six degrees of freedom at the matching frequency corresponding to the 

wave frequency of sub-problem A. Here, the added mass coefficients 𝐴𝑗𝑘, the damping 

coefficients 𝐵𝑗𝑘, and the hydrostatic restoring force coefficients 𝐶𝑗𝑘 are calculated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The decoupled equation of the ship's motion can be given by: 

 
(𝑀 + 𝐴)𝜂̈ + 𝐵𝜂̇ + 𝐶𝜂 = 𝐹𝑒𝑖𝜔𝑒𝑡 

 

𝑆𝑢𝑏 − 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝐴 →  𝐹𝑒𝑖𝜔𝑒𝑡 

𝑆𝑢𝑏 − 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝐵 →  𝐴𝜂̈ + 𝐵𝜂̇ + 𝐶𝜂 

(5) 

 

This work addresses the radiation problem – sub-problem B, that is the calculation of the 

hydrodynamic coefficients 𝐴𝑗𝑘 and 𝐵𝑗𝑘. 

3.  Conformal Mapping 

As started above the main principle in Strip Theory involves dividing the submerged part of the ship 

into a finite number of strips. Hence, 2D hydrodynamic coefficients for added mass a𝑗𝑘 and damping 

b𝑗𝑘 can be computed for each strip and then be summed over the length of the body to yield the 3D 

coefficients [11]. 

The 2D dynamic coefficients can be calculated from boundary element methods or via conformal 

mapping [11]. 

Conformal mapping is used to transform the section into a circle, for which the form of the multipole 

potential is known. This representation is then transformed back into the physical plane using the derived 

mapping function [12]. 

Figure 3. Strip Model of a ship. Each strip has 

constant cross section [5]. 
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The problem on conformal mapping now becomes one of determining the parameters in the 

transformation which map the arbitrary section to a unit circle. 

The earliest two-parameter mapping technique was due to [2]. This method produces reasonable 

representations of conventional sections [12]. 

The determination of the local 2D added mass and damping coefficients were being studied by many 

researchers, such as Ursell [1], [13], [14], [15] and [16], using the so-called Lewis Forms [17]. 

However, nowadays most of the computing tools available make use of more complex panel 

methods. 

3.1.  Computation of the Hydrodynamic Coefficients using a two-parameter conformal method 

The algorithm developed computes the local heave added mass a33 and heave damping coefficients 𝑏33 

on each section of the ship (the global ship added mass and damping coefficients in heave using Strip 

Theory being: 𝐴33 = ∫𝑎33𝑑𝑥 and 𝐵33 = ∫𝑏33𝑑𝑥 respectively) . 

Our work was based on the formulation developed by [18]. This scientific document gives the 

expressions for the added mass and damping coefficients for conventional hull cross-sections related 

with the Lewis forms approximations. 

3.1.1.  Lewis Transformation Method 

Due to the fact that ship´s hulls do not have semi-circular cross-sections, Lewis Transformation Method 

is used to extend the results for the semi-circle into solutions for more realistic hull shapes. In this way, 

it must be considered that [17]: 

 Small motion amplitudes are assumed. 

 The hydrodynamic coefficients are calculated with the usual potential flow assumptions of: 

o Negligible viscosity; 

o Negligible compressibility; 

o No flow separation; 

o No skin friction. 

 The transformation relates only the half cylinder below the free surface. 

 The mapping relates only to the underwater shape of the hull cross section. 

In this technique, the circle and the flow around it (stream and potential functions) are calculated in 

the complex 𝑧 plane where: 

 

𝑧 = 𝑥 + 𝑖𝑦 = 𝑖𝑟𝑒−𝑖𝜃 [𝑚] (6) 

 

Then, these results are mapped into the flow around a hull section in the complex 𝜁 plane (the hull 

cross section plane) defined as: 

 

𝜁 = 𝑥𝐵2 + 𝑖𝑥𝐵3 [𝑚] (7) 

 

These two complex planes can be related by the following transformation: 

 

𝜁 = 𝑓(𝑧)[𝑚] (8) 

It´s important to understand that for each size and shape of the section of the ship in the 𝜁 plane, the 

functional form of the transformation equations must be determined for every individual case. 

Therefore, the transformation that will map any point on a semicircle of radius 𝑎 meters in the 𝑧 

plane into a corresponding point on a given shape in the 𝜁 plane (if appropriate values of the coefficients 

𝑎0, 𝑎1, 𝑎3 are chosen) can be referred as [17]: 
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𝜁 = 𝑓(𝑧) = 𝑎0 𝑎 (
𝑧

𝑎
+

𝑎 𝑎1

𝑧
+

𝑎3 𝑎3

𝑎3
)  [𝑚] (9) 

Lewis forms are defined by the values of: 

 The section area coefficient: 

𝜎 =
𝐴

𝐵𝐷
 (10) 

 

 The beam/draft ratio: 

𝐻 =
𝐵

𝐷
 (11) 

 

where: 

A – the underwater sectional area; 

𝐵 – the underwater sectional beam;  
𝐷 – the sectional draft. 

 

Taking into account that the section of the ship has radius 𝑟 = 𝑎 [𝑚], substituting equations (6) and 

(7) into equation (9), and separating real and imaginary parts, we can obtain a pair of parametric 

equations in 𝜃 (from 𝜃 = 𝜋/2 to 𝜃 = 0) describing the shape of the Lewis form in the 𝜁 plane: 

 
𝑥𝐵2 = 𝑎0𝑎[(1 + 𝑎1)𝑠𝑖𝑛𝜃 − 𝑎3 𝑠𝑖𝑛(3𝜃)] [𝑚] (12) 

 
 𝑥𝐵3 = 𝑎0𝑎[(1 − 𝑎1)𝑐𝑜𝑠𝜃 − 𝑎3 𝑐𝑜𝑠(3𝜃)] [𝑚] (13) 

 

The coefficients a1 and  a3 are obtained with these equations: 

 

𝑐 = 3 +
4𝜎

𝜋
+ (1 −

4𝜎

𝜋
) (

𝐻 − 2

𝐻 + 2
)
2

 (14) 

 

𝑎3 =
3 − 𝑐 + √9 − 2𝑐

𝑐
 (15) 

 

𝑎1 = (1 + 𝑎3) (
𝐻 − 2

𝐻 + 2
) (16) 

 

 

It should be noted that a0 is a scale factor governing the overall size of the Lewis form [12]: 

 

𝑎0 =
𝐵0

1 + 𝑎1 + 𝑎3
 (17) 

 

Being 𝐵0 the half underwater sectional beam. Some examples of Lewis forms are presented in Figure 

4. 
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3.1.2.  Added Mass and Damping Coefficients for a heaving Lewis Form – frigate cross section 

Considering a cross section from a Portuguese Navy frigate with the following dimensions: 

 

 𝐵 = 13.2 [𝑚]; 

 𝐷 = 4       [𝑚]; 

 𝐴 = 22.4 [𝑚2]. 

It is possible to obtain the sectional area coefficient and beam/draft ratio: 

 

 𝜎 =
A

BD
= 0.4242; 

 𝐻 =  
B

D
 = 3.3000. 

By the fact that only the half section of the ship is being considered on the Lewis Transformation 

Method, then in the ζ plane xB2 and xB3 it will be: 

 

 xB2 =
13.2

2
= 6.600 [𝑚]; 

 xB3 =  4.000            [𝑚]. 

The studied frigate cross section Lewis form is presented on Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Examples of Lewis forms [11]. 

Figure 5. Lewis form of a cross section from Portuguese Navy  

frigate. 
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Considering the studies made by [18] the expressions for added mass and damping coefficients in 

heave for each section of the ship are: 

 

𝑎33 =
𝜌𝐵2(𝐴∗𝑁0 + 𝐵∗𝑀0)

2(𝐴∗
2 + 𝐵∗

2)
 [𝑡] (18) 

 

𝑏33 =
𝜌𝐵2𝜔𝜋2

4(𝐴∗
2 + 𝐵∗

2)
 [𝑘𝑁/(𝑚/𝑠𝑒𝑐)] (19) 

 

An exhaustive description for both equations can be found in Appendix [17]. 

Comparing the non-dimensional curves of hydrodynamic coefficients in heave (added mass and 

damping) presented on page 120 [17] with the curves obtained using the algorithm written in Matlab®, 

it is possible to see that the results are similar with an approximate error of: 

 

 𝐻 = 2 , 𝜎 = 1; 2% for added mass and 17% for damping; 

 𝐻 = 4 , 𝜎 = 1;  4% for added mass and 8% for damping; 

 𝐻 = 8 , 𝜎 = 1;  8% for added mass and 11% for damping; 

 𝐻 = 1.155, 𝜎 = 0.5;  5% for added mass and 14% for damping. 

The respective curves are presented in Figures 6 and 7. This comparison serves the purpose of 

validation before making the calculations for the real cross section of the naval frigate. 

The legend for the curves given by [17] and Matlab® code: 

 

 

 

 

 

 

 

 

 
1. Added mass coefficient in heave: 

 

 

a. Results from [17]: 

 

b. Results from Matlab® code: 

 

 

 

Figure 6. Hydrodynamic coefficients - added mass, from [17] and Matlab® code. 
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2. Damping coefficient in heave: 

a. Results from [17]: 

 

 

 

 

 

 

b. Results from Matlab® code: 

 

 

 

 

 

 

Then the cross-sectional non-dimensional added mass and damping hydrodynamic coefficients for 

the cross section from Portuguese Navy frigate in heave were calculated and the results can be seen in 

Figures 8 and 9. 

While the damping curve follows a expected tend, the added mass presents oscillations at the high 

frequencies that where not expected and need further study and validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Hydrodynamic coefficients – damping, from [17] and Matlab® code. 

 
Figure 7. Hydrodynamic coefficients - damping from (Lloyd, 1998) and Matlab® 

program. 

Figure 8. Added mass coefficient of a cross section from Portuguese 

Navy frigate in heave. 
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4.  Conclusions 

This work tried to address the radiation problem in what respects the calculation of the hydrodynamic 

coefficients 𝐴𝑗𝑘 and 𝐵𝑗𝑘 in heave, 𝐴33 and 𝐵33. 

A computing code was developed to estimate the local heave added mass 𝑎33 and heave damping 

coefficients 𝑏33 using a two parameter conformal mapping method usually known as Lewis forms. 

The code was based on the equations for the radiation problem presented by Lloyd [17]. 

The results in the form of non-dimensional heave added mass and heave damping coefficients were 

compared with those presented by de Jong [18] for several sectional forms and seem to agree fairly well, 

making a first validation of the code. 

The code was applied to the cross section of a navy frigate and the results obtained for the Lewis 

form seem correct. The results obtained for a33 and 𝑏33 show that: 

 

 for the added mass there are oscillations in higher frequencies region that need further study since 

they are not expected using this method which is known to be stable through all range of 

frequencies; 

 the damping follows a expectable trend, however there are calculation instabilities to be solved 

in the very low frequency range (𝜔(𝐵/2𝑔)0.5 < 0.25); 

 for both hydrodynamic coefficients a validation needs to be made through comparison with other 

method for the same section. 

 

  

Figure 9. Damping coefficient of a cross section from Portuguese Navy 

frigate in heave. 
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Appendix 

 

𝑎1 = (1 + 𝑎3) (
𝐻 − 2

𝐻 + 2
) 

 

𝑎3 =
3 − 𝑐 + √9 − 2𝑐

𝑐
 

 

𝑐 = 3 + 
4𝜎

𝜋
+ (1 −

4𝜎

𝜋
) (

𝐻 − 2

𝐻 + 2
)
2

 

 
𝑥𝐵2 = 𝑎0𝑎  [(1 + 𝑎1)𝑠𝑖𝑛𝜃 − 𝑎3 𝑠𝑖𝑛(3𝜃)] 

 
𝑥𝐵3 = 𝑎0𝑎  [(1 − 𝑎1)𝑐𝑜𝑠𝜃 − 𝑎3𝑐𝑜𝑠 (3𝜃)] 

 

𝑎33 =
𝜌𝐵2(𝐴∗𝑁0 + 𝐵∗𝑀0)

2(𝐴∗
2 + 𝐵∗

2)
 [𝑡] 

 

𝑏33 =
𝜌𝐵2𝜔𝜋2

4(𝐴∗
2 + 𝐵∗

2)
 [𝑘𝑁/(𝑚/𝑠𝑒𝑐)] 

 

𝐴∗ = 𝛹𝑐 (1,
𝜋

2
) + ∑ [𝑝2𝑚(−1)𝑚−1

𝑘𝐵𝑄1

2𝑄2
]

∞

𝑚=1

[𝑚2/𝑠𝑒𝑐] 

 

𝐵∗ = 𝛹𝑆 (1,
𝜋

2
) + ∑ [𝑞2𝑚(−1)𝑚−1

𝑘𝐵𝑄1

2𝑄2
]

∞

𝑚=1

[𝑚2/𝑠𝑒𝑐] 

 

𝑀0 = ∫ 𝛷𝑆(1, 𝜃)
𝑄3

𝑄2
𝑑𝜃

𝜋

2

0

+
1

𝑄2
(∑[𝑞2𝑚(−1)𝑚−1𝑄4]

∞

𝑚=1

+
𝜋𝑘𝐵𝑄5𝑞2𝑚

8𝑄2
) [𝑚2/𝑠𝑒𝑐] 

 

𝑁0 = ∫ 𝛷𝑐(1, 𝜃)
𝑄3

𝑄2
𝑑𝜃

𝜋

2

0

+
1

𝑄2
(∑[𝑝2𝑚(−1)𝑚−1𝑄4]

∞

𝑚=1

+
𝜋𝑘𝐵𝑄5𝑝2𝑚

8𝑄2
) [𝑚2/𝑠𝑒𝑐] 

 
𝛹𝑐 = 𝜋 𝑒𝑥𝑝(−𝑘𝑥𝐵3) 𝑠𝑖𝑛(𝑘|𝑥𝐵3|) [𝑚

2/𝑠𝑒𝑐] 
 

𝛷𝑐 = 𝜋 𝑒𝑥𝑝(−𝑘𝑥𝐵3) 𝑐𝑜𝑠(𝑘𝑥𝐵2) [𝑚
2/𝑠𝑒𝑐] 

 
𝛹𝑆 = −𝜋 𝑒𝑥𝑝(−𝑘 𝑥𝐵3) 𝑐𝑜𝑠(𝑘 𝑥𝐵2)

+ ∫
𝑒𝑥𝑝(−𝑣|𝑥𝐵2|)

𝑣2 + 𝑘2
[𝑣 𝑠𝑖𝑛(𝑣 𝑥𝐵3) + 𝑘 𝑐𝑜𝑠(𝑣 𝑥𝐵3)] 𝑑𝑣 

∞

0

[𝑚2/𝑠𝑒𝑐] 

 

𝛷𝑆 = 𝜋 𝑒𝑥𝑝(−𝑘𝑥𝐵3) 𝑠𝑖𝑛(𝑘|𝑥𝐵2|) − ∫
𝑒𝑥𝑝(−𝑣|𝑥𝐵2|)

𝑣2 + 𝑘2
[𝑣 𝑐𝑜𝑠(𝑣 𝑥𝐵3) + 𝑘 𝑠𝑖𝑛(𝑣 𝑥𝐵3)] 𝑑𝑣 

∞

0

[𝑚2/𝑠𝑒𝑐] 

𝛹𝑐(1, 𝜃) −
𝑄6

𝑄2
𝛹𝑐 (1,

𝜋

2
) = ∑ 𝑝2𝑚𝑓2𝑚

𝑁

𝑚=1

[𝑚2/𝑠𝑒𝑐] 
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𝛹𝑆(1, 𝜃) −
𝑄6

𝑄2
𝛹𝑆 (1,

𝜋

2
) = ∑ 𝑞2𝑚𝑓2𝑚

𝑁

𝑚=1

[𝑚2/𝑠𝑒𝑐] 

 

𝑓2𝑚 = −(𝑠𝑖𝑛(2𝑚 𝜃) +
𝑘𝐵

2𝑄2
𝑄7 +

𝑘𝐵

2𝑄2
2
(−1)𝑚𝑄1𝑄6) [𝑚2/𝑠𝑒𝑐] 

 

𝑄1 =
1

2𝑚 − 1
−

𝑎1

2𝑚 + 1
−

3𝑎3

2𝑚 + 3
 

 
𝑄2 = 1 + 𝑎1 + 𝑎3 

 
𝑄3 = (1 + 𝑎1)𝑐𝑜𝑠𝜃 − 3𝑎3𝑐𝑜𝑠 (3𝜃) 

 

𝑄4 =
1 + 𝑎1

4𝑚2 − 1
+

9𝑎3

4𝑚2 − 9
 

 
𝑄5𝑝2𝑚

= (1 + 𝑎1 − 𝑎1𝑎3)𝑝2 − 𝑎3𝑝4 

 
𝑄5𝑞2𝑚

= (1 + 𝑎1 − 𝑎1𝑎3)𝑞2 − 𝑎3𝑞4 

 
𝑄6 = (1 + 𝑎1)𝑠𝑖𝑛𝜃 − 𝑎3𝑠𝑖𝑛 (3𝜃) 

 

𝑄7 =
𝑠𝑖𝑛 ((2𝑚 − 1)𝜃)

2𝑚 − 1
+

𝑎1𝑠𝑖𝑛 ((2𝑚 + 1)𝜃)

2𝑚 + 1
−

3𝑎3𝑠𝑖𝑛 ((2𝑚 + 3)𝜃)

2𝑚 + 3
 

 
 


