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Abstract. Adenosine-to-inosine RNA editing is an important post-transcriptional 
modification, which converts adenosines to inosines in both coding and noncoding 
RNA transcripts. Therefore, this modification can result in the diversification of the 
transcriptome. It is significant to accurately identify adenosine-to-inosine editing sites 
for further understanding their biological functions. Given an uncharacterized RNA 
sequence that contains many adenosine resides, can we identify which one of them can 
be converted to inosine, and which one cannot? To meet the increasingly high demand 
form most experimental scientists working in the area of drug development, we have 
developed a new predictor called PAI-SAE by hybrid features combining with 
dinucleotide-based auto-cross covariance (DACC), pseudo dinucleotide composition 
(Pse DNC) and nucleotide density, followed by a spare auto-encoder model. It has 
been observed via rigorous jackknife test that the predictor PAI-SAE is superior to 
others in this area. 

1.  Introduction 
RNA editing is a post-transcriptional process, selectively inserting and deleting single nucleotide, or 
converting one nucleotide to another [1]. There are two major types of RNA editing in mammals: one 
is C-to-U (cytidine to uracil), the other, a much more common type, is A-to-I (adenosine to inosine) 
[2]. A-to-I editing usually takes place under the control of the enzyme ADARs (adenosine deaminases 
that act on RNA) that bind dsRNA (double-stranded RNA) structures [3]. In this catalytic process, a 
targeted adenosine (A) within these structures is deaminated into inosine (I), and inosine (I) can be 
recognized as guanosine (G), because of the similar functions to G by the cellular machinery [4]. 
Many biological mechanisms, such as RNA stability, localization, splicing, miRNA function and 
translation, are affected by the A-to-I editing event. Therefore, it is significant to accurately identify 
adenosine-to-inosine editing sites for further understanding their biological functions. 

With the progress of RNA sequencing technology, identifying A-to-I editing sites has entered into 
the perspective of researchers. For example, the next-generation sequencing has been successfully 
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used to identify hundreds of human A-to-I editing sites in non-Alu regions since 2009 [5]. And A-to-I 
editing sites were accurately identified in H.sapiens by transcriptome sequencing in 2012 and 2014 
[4,6,7] . Following these works, A-to-I editing sites were successfully detected in M.musculus on the 
basis of RNA-Seq method [8].  

Although great successes have been achieved in this regard, it is expensive and time-consuming to 
identify A-to-I editing sites by means of the standard laboratory methods. Facing the explosive growth 
of RNA sequences discovered in the postgenomic age, it is highly demanded to develop computational 
approach to help getting the information. Very recently, in a pioneering study, St Laurent et al. [9] 
proposed an interesting method to identify A-to-I editing sites in D. melanogaster via an iterative 
feedback loop of computational prediction and experimental validation. But no web-server has been 
provided for their method, and hence its practical application value is quite limited. For this reason, 
Chen et al. [10] proposed a prediction model “PAI” on the basis of support vector machine by using 
pseudo dinucleotide composition method to identify A-to-I editing sites in D. melanogaster in 2016. 
And the corresponding web-server was constructed. The next year, a predictor “iRNA-AI” [11] based 
on support vector machine was constructed by using the chemical properties of nucleotides and 
nucleotide density. In view of its importance and urgency, it is certainly worthwhile to further improve 
the prediction quality by introducing some novel approaches as elaborated below. 

In this study, we constructed the new hybrid features by combining DACC [12], PseDNC [13,14] 
and nucleotide density [15] and spare auto-encoder [16,17] to develop a new predictor “PAI-SAE” to 
identify A-to-I RNA editing sites in D. melanogaster aimed at improving its Matthew correlation 
coefficient(MCC) and accuracy(ACC), the two most important and harshest metrics for predictor.  

2.  Materials and Methods 

2.1.  Benchmark Dataset 
St Laurent [9] et al. Sequenced the RNAs of the D. melanogaster to carry out genome-wide studies of 
adenosine-to-inosine RNA editing with single molecular sequencing in 2013. Based on experimental 
data, after removing redundant sequences by using CD-HIT[18], Chen et al. [10] constructed the 
benchmark dataset S  including subset S   composed of 125 adenosine-to-inosine editing site 

sequences and subset S   composed of 119 non-adenosine-to-inosine editing site samples. The 
benchmark dataset for the current study can be formulated as: 

S S S                                                                    (1) 

Where the symbol   represents the union of the subsets.  

2.2.  Feature Extraction 

2.2.1.  Physicochemical properties of dinucleotides. RNA is composed of four different types of 
nucleotides i.e. A (adenosine), C (cytidine), G (guanosine), and U (uridine). Then, sixteen 
dinucleotides were denoted as AA, AC, AG, AU, CA, , UU. However, each of sixteen dinucleotides 
has different physicochemical property. As RNA physicochemical properties are the most intuitive 
features of biochemical reactions, in this paper, the eleven involved physicochemical properties were: 
(1). PC1:Shift ; (2) PC2:Slide; (3) PC3:Rise; (4) PC4:Tilt; (5) PC5:Roll; (6) PC6:Twist; (7) PC7:Stacking 
energy; (8) PC8:Enthalpy; (9) PC9:Entropy; (10) PC10:Free energy; (11) PC11:Hydrophilicity. And their 
original values for each dinucleotide are listed in Table 1.  
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Table 1. The original values of the eleven physicochemical properties for each RNA dinucleotide 

Code PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 
GG -0.01 -1.78 3.32 0.30 12.1 32.0 -11.1 -12.2 -29.7 -3.26 0.17 
GA 0.07 -1.70 3.38 1.30 9.40 32.0 -14.2 -13.3 -35.5 -2.35 0.10 
GC 0.07 -1.39 3.22 0.00 6.10 35.0 -16.9 -14.2 -34.9 -3.42 0.26 
GU 0.23 -1.43 3.24 0.80 4.80 32.0 -13.8 -10.2 -26.2 -2.24 0.27 
AG -0.04 -1.50 3.30 0.50 8.50 30.0 -14.0 -7.60 -19.2 -2.08 0.08 
AA -0.08 -1.27 3.18 -0.80 7.00 31.0 -13.7 -6.60 -18.4 -0.93 0.04 
AC 0.23 -1.43 3.24 0.80 4.80 32.0 -13.8 -10.2 -26.2 -2.24 0.14 
AU -0.06 -1.36 3.24 1.10 7.10 33.0 -15.4 -5.70 -15.5 -1.10 0.14 
CG 0.30 -1.89 3.30 -0.10 12.10 27.0 -15.6 -8.00 -19.4 -2.36 0.35 
CA 0.11 -1.46 3.09 1.00 9.90 31.0 -14.4 -10.5 -27.0 -2.11 0.21 
CC -0.01 -1.78 3.32 0.30 8.70 32.0 -11.1 -12.2 -29.7 -3.26 0.49 
CU -0.04 -1.50 3.30 0.50 8.50 30.0 -14.0 -7.60 -19.2 -2.08 0.52 
UG 0.11 -1.46 3.09 1.00 9.90 31.0 -14.4 -7.60 -19.2 -2.11 0.34 
UA -0.02 -1.45 3.26 -0.20 10.7 32.0 -16.0 -8.10 -22.6 -1.33 0.21 
UC 0.07 -1.70 3.38 1.30 9.40 32.0 -14.2 -10.2 -26.2 -2.35 0.48 
UU -0.08 -1.27 3.18 -0.80 7.00 31.0 -13.7 -6.60 -18.4 -0.93 0.44 

2.2.2.  Dinucleotide-Based Auto-Cross Covariance. With the development of computer technology, 
many feature vectors that are used to represent sample sequences would be directly generated by the 
web server, such as Pse-in-One [19], repRNA [20], and repDNA [21], without need to go through the 
complex mathematical details. 

Open the Web page by clicking the link at http://bioinformatics.hitsz.edu.cn/Pse-in-One/ and click 
on the serve button, you can see three different efficient tools for feature extraction including 
PseDAC-General, PseRAC-General and PseAAC-General and choose the second one for RNA 
sequences. After selecting the mode dinucleotide-based auto-cross covariance (DACC) and 
corresponding above-mentioned eleven physicochemical properties, you can easily obtain the desired 
results. Then, the necessary parameter ‘lag’ must be set. Experiments show the best results can be 
obtained when the value of the parameter lag is 4. 

Generally, a RNA sequence R  can be expressed as 

  1 2 3 4 5 6 LR R R R R R R R L                                                         (2) 

Where L  represents the length of sequenceR . 
Then, in accordance with the above procedure, the sample sequence R  can be formulated by a 484-

dimensional feature vector shown as below. 

                 1 2 484[ ]TuR ξ ξ ξ ξ L L                                                   (3) 

The derivation process of the Eq. (3) was described in detail in references [12,22]. 

2.2.3.  Pseudo Dinucleotide Composition (Pse DNC). According to the references [10,23], based on 
the above-mentioned eleven physicochemical properties, the sample sequence R  can be defined as 

 1 16 17 16[ ]TλR v v v v  L L                                                (4) 

Where λ , the number of sequence order correlation factors, is an integer and must be smaller than 
1L . And each component can be formulated by  
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                                             (5) 

Where ω  is the weight factor; jθ  is called the j th-tier correlation factor; kf is the normalized 

occurrence frequency. And the feature vector formulated by Eq. (4) can be also directly generated by 
the web server Pse-in-One. 

Here, the last few components of the feature vector, that can show the sequence order information, 
are adopted to represent the RNA sequence, as shown below. 

17 16[ ]TλR v v  L                                                             (6) 

Experiments show that the best results can be obtained when the parameter λ  and ω  are set to 5 
and 0.3, respectively. Then we can obtain a 5-dimensional feature vector. 

2.2.4.  Nucleotide Density. As described in the references [11,15], the concept of nucleotide density 
was proposed to reflect the frequency of a nucleotide and its distribution in a given RNA sample 
sequence R  formulated by Eq. (2). Then the corresponding feature vector can be expressed as  

1 2 1 2 51[ ] [ ]T T
i L iR P P P P P P P P L L L L                                 (7) 
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Where iP  is the density of the nucleotide iR  at position i  of a given RNA sample sequence with L  

nucleotides, and  
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                                                         (9) 

2.2.5.  Feature Fusion. In order to increase the degree of discrimination of RNA sequences and further 
improve the performance of a predictive model, we can incorporate the above-mentioned three 
different feature extraction methods into a fusion vector to express the sample sequence formulated by 
Eq.(2), as shown below. 

1 2 484 17 16 5 1 51[ ]TuR ξ ξ ξ ξ v v P P L L L L               (10) 

2.2.6.  Sparse Auto-Encoder. As a popular classifier, sparse auto-encoder has been successfully 
applied in bioinformatics field [24-26]. In this paper, we construct a sparse auto-encoder with two 
hidden layers to identify A-t-I sites. In order to achieve this more effectively, we can use the deep 
learning software package that can be downloaded from the website: 
https://github.com/rasmusbergpalm/DeepLearnToolbox. In this package, after using the SAE and NN, 
we can obtain the optimized results through the optimization of the parameters. 
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The predictor is called ‘PAI-SAE’, where ‘P’ stands for ‘predicting’, ‘AI’ for ‘A-t-I editing sites’ 
and ‘SAE’ for ‘sparse auto-encoder’. 

2.2.7.  Prediction Quality Examination. In general, there are four conventional metrics, i.e. Accuracy 
(ACC), Sensitivity (Sn), Specificity (Sp), and Matthew correlation coefficient (MCC), that are widely 
used to examine the performance of a predictor in the field of bioinformatics, as formulated by  

            

( ) ( )

( )( )( )( )
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TP FN
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TN FP

TP TN
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TP TN FP FN

TP TN FP FN
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                            (11) 

Where TP represents the number of the A-t-I editing sample sequences correctly predicted as the 
A-t-I editing sample sequences; TN, the number of the non-A-t-I editing sample sequences correctly 
predicted as the non-A-t-I editing sample sequences; FP, the number of the non-A-t-I editing sample 
sequences incorrectly predicted as the A-t-I editing sample sequences; FN, the number of the A-t-I 
editing samples incorrectly predicted as the non-A-t-I editing samples. 

2.2.8.  Cross-Validation. As most scientists on biology have done, we use the validation methods to 
score the above-mentioned four metrics. Generally, there are three cross-validation methods, namely 
independent dataset test, K-fold cross-validation test and jackknife test. Although K-fold cross-
validation test has more advantages in the computational time, the jackknife test can yield the unique 
outcome for a given benchmark dataset. Therefore, the jackknife test is adopted to examine the 
predictor’s performance in this paper. 

3.  Result and Discussion 
Listed in Table 2 are the rates obtained by the current PAI-SAE predictor via the jackknife test on the 
benchmark dataset. For facilitating comparison, listed in that tables are also the corresponding results 
obtained by the PAI, the existing most powerful predictor based on Supper Vector Machine for 
identify A-t-I editing sites in D. melanogaster.  

As shown in Table 2, the scores of the four metrics used to quantitatively measure the quality of a 
single-label predictor, the new predictor “PAI-SAE”, are higher than those of the predictor “PAI”. For 
example, the ACC of our predictor “PAI-SAE” gains 2.46 per cent. The MCC rate has increased by 
4.14 per cent, the Sn rate, by 1.60 percent, and the Sp rate, by 3.36 per cent. As pointed out in a 
comprehensive review, among the aforementioned four metrics, the most important are MCC and 
ACC. The high success rates shown in Table 2 clearly indicate that the current predictor is not only a 
pioneer one in this area, but also holds very high potential to become a high throughput tool for both 
basic research and drug development. 

Table 2. The comparison of the jackknife test results on benchmark dataset. 

Predictor ACC (%) MCC (%) Sn (%) Sp (%) 
PAIa 79.51 60.00 85.60 73.11 

PAI-SAEb 81.97 64.14 87.20 76.47 
 

aThe prediction method developed by Chen et al. (2016) 
bThe prediction method proposed in this paper. 
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4.  Conclusion 
Identification of adenosine-to-inosine editing sites in RNA sequences is important for the intensive 
study on RNA function and the development of new medicine. In this paper, a new predictor called 
PAI-SAE was constructed based on hybrid features combining with DACC, PseDNC and nucleotide 
density by using spare auto-encoder. The jackknife test results of the predictor PAI-SAE on the 
benchmark dataset show that our predictor is superior to others in this area. And the results were 
promising enough for our predictor to be used as an analytic solution to more genomic problems.  
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