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Abstract. This paper describes an efficient method for multi-robot simultaneous 
localization and mapping (SLAM), which establishes a joint model of multi-robot 
pose graphs based on several special inner and outer loop points called conjunction 
points. An optimization algorithm based on the fusion of pose graphs is proposed. The 
rapid fusion of multiple local sub graphs is realized by using the robot encounter 
information, thus solving the problem of indeterminate positional relationship of the 
robot and realizing the optimization of the global map. 

1.  Introduction 
The research of multi-robot SLAM is based on the single robot SLAM. The single robot SLAM has enough 
complexity and it will inevitably add additional challenges when moving to multiple robots platforms [1, 2]. For 
multi-robot SLAM, scholars have proposed various filtering-based solutions which take advantage of the 
consistency and accuracy [3]. However, the calculation process is too complicated and it is hard to handle the 
closure circumstance [4]. Therefore, researchers gradually transferred from the traditional filter optimization 
algorithm to graph optimization algorithm [5]. 

In this paper, the idea of conjunction point is proposed based on the existing graph optimization 
algorithm. The conjunction points are used to transform the respective poses of each pose graph into 
the global frame. The update of conjunction point replaces the update of the pose graph of the 
traditional graph optimization algorithm, which simplifies the traditional graph optimization method 
and improves the speed and accuracy of the global map creation, laying a solid foundation for further 
multi-robot co-location [6]. The comparison between multi-robot SLAM after introduction of 
conjunction points and traditional multi-robot SLAM is shown in Figure 1 and Figure 2. 
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Figure 1. Ordinary multi-robot SLAM process. 
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Figure 2. Multi-robot SLAM process after introduction of conjunction points. 

2.  Approach 

2.1.  Multi-robot Relative Pose Initialization 
Firstly, the multi-robot SLAM problem is represented by the pose graphs of multiple robots in the global 
coordinate system [7]. A series of factor graphs is used here to describe this process intuitively, in which node 
represents robot pose and edge represents motion trajectory from one node to another. Figure 3 shows the 
Markov chain of two robots. The shaded circles represent pose variables and the black dots represent 
measurements. For R robots, the trajectory {1, 2, , 1}r R L  of robot is given by 1rM   pose variables 

1
1{ } rMr

i ix 
 . Then the degree of freedom of each trajectory r is fixed by introducing a prior (generally selecting the 

coordinate origin) [8]. There are two forms of constraints between poses of a single trajectory: the relationship 
between successive poses (scan matching results from laser), while the other type of constraint connecting two 
nearby nodes when loop closing is detected [9]. For the sake of simplicity, the loop closing constraint is omitted 
in the pose graph, and only the constraints between successive poses are shown in the example of Figure 3. 
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Figure 3. Two pose graphs for two robots without encounters. 

 
The trajectories of the robots described above are completely independent and is now changed by 

introducing encounters between robots. The encounter ne  between the two robots r and r' is a 
measurement of connection of the two robots shown in Figure4, highlighted in blue dot t. 
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Figure 4. Pose graphs of two robots with two encounters. 
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This paper applies probabilistic methods to estimate the actual trajectory of the robot based on all 

measurements [10]. All pose variables   , 1

1, 1

rR Mr
i r i

X x


 
 , measurements and priors    , 1

11, 1

rR M Rr
i r rr i

Z u p


 
 U  

and encounters   1

N

n n
E e


  are given by equation (1), 
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The process model of laser scan matching is described by equation (2). The noise term r

iw  is a 

zero-mean Gaussian distribution with covariance matrix r
i . 

 
                                                                      1( , )r r r r

i i i i ix f x u w                                                                            (2) 

 
The process model that simulates the encounter between robots is described by equation (3), where 

the noise term is a zero-mean Gaussian distribution with covariance matrix n . 
 

                                                                      '( , )n n

n n

r r
i n j n nx h x e v                                                                            (3) 

 
Calculating the Maximize a Posterior (MAP) estimate of the robot trajectory X in Figure 4. 
 

                                                   * arg max ( , , ) arg min log ( , , )
X X

X P X Z C P X Z C                                      (4) 

 
Assuming that the prior covariance is Σ, equation (3-4) are brought into equation (2) to obtain the 

following nonlinear least squares problem: 
 

                 
1

'2 2 2
0 1

0 1 1

arg max || || || ( , ) || || ( , ) ||
r

n n
r

n n ni

MR N
r rr r r r r

i i i i n j n i
X r i n

X p x f x u x h x e x



  

  

          
   
                    (5) 

 
Where the notation 2 1|| || TF F F

    for the squared Mahalanobis distance   with covariance matrix 
is used. 

The iSAM [11] algorithm is proposed to solve this nonlinear least squares problem. Through a 
series of transformations, linearization of the measurement equations and subsequent collection of all 
components in one large linear system yields the following standard least squares problem:  

 
                                                                   * 2arg min || ||A b


                                                                   (6) 

 

Where the vector nR   contains the poses of all robot trajectories. The matrix m nA R   is a large 
but sparse measurement Jacobian with m measurement rows, and mb R  is the right-hand side vector. 
iSAM reduces the least-squares problem to a linear system with unique solutions by QR 
decomposition of matrix A: 

 
                                                                             R d                                                                                 (7) 

2.2.  Pose Graphs Fusion 
Initialization is a major problem of the approach to multi-robot mapping described so far. If there is no 
encounter at the beginning of the sequence, then there is a degree of freedom on the second trajectory 


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and it is necessary to add a prior to fix the second robot trajectory [12]. However, before the first 
encounter, there’s no a prior good initial estimate. Because any choice is likely to conflict with the 
first encounter once that is added, as shown in Figure 4. 

In order to solve the initialization problem, the concept of a conjunction point is introduced. The 
conjunction point rT  of the robot trajectory r represents the offset of the entire trajectory relative to the 
global coordinate system. Each pose diagram is first held in its own local coordinate system as shown 
in Figure 4. Poses are transformed to the global frame by r

r iT x . The symbol   is used here to 
represent the transformation when operating in the 2D plane, composing a pose a with a transform t is 
defined as 
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                                                  (8) 

 
As shown in Figure 5, the conjunction points of the two pose graphs are added. The encounter is a 

global measurement between the two trajectories, but the pose variables for each trajectory are in the 
robot's own coordinate system. The conjunctions are used to transform the pose of each pose graph 
into the global coordinate system. The measurement model h is accordingly modified to 

'
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Figure 5. Introduce conjunction points for each trajectory. 

 
Suppose that the robot's loop closing constrain noise term is a zero-mean Gaussian distribution 

with covariance matrix ij . Adding the loop closing constraint of a single robot, then equation (5) 

becomes 
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Where rp represents the number of internal loop closing constraints of robot. An example with 

three pose graphs is shown in Figure 6. Note that the number of conjunction nodes depends only on 
the number of robot trajectories. 
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Figure 6. This example shows three encounters between three robots. 

3.  Experiments and results 
This paper carried out two sets of experiments. In the first set of experiments, three robots are used in 
the indoor environment to verify the effective of the proposed our algorithm. In the second set of 
experiments, this system was tested by using the famous KITTI data set. 

3.1.  Indoor Experiment 
Three robots equipped with laser performing SLAM on indoor office scenes are shown in Figure 7. 
These three robots are used to map two different rooms and a corridor in the lab, and the trajectories 
were represented by red, black and blue. The Figure 8 shows three sub-maps created by above robots. 
Figure 9 shows a comparison of the global map obtained by performing a direct rigid body 
transformation with the map obtained by global optimization. Due to the error of the sensor and the 
noise of each robot's sensor is different, the established map cannot perfectly overlap. However, global 
optimization using multiple encounter information can avoid accumulated error caused by using the 
rigid body transformation directly, and the result of mapping is more accurate. 
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Figure 7. Experiment platform. 

 

 

Figure 8. Sub-map from each of the three robots. 
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Figure 9. Comparison of the global map obtained by performing a direct rigid body transformation 
with the map obtained by global optimization. 

3.2.  KITTI data set  
We use the 00 sequence in the famous KITTI dataset, which has a spatial range of 564 meters x 496 
meters. We use data from frame 1 to frame 1500 as the first sub-map, and frame 1501 to frame 3000 
as the second sub-map, and frame 3001 to frame 4541 as the third sub-map generated from three 
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robots and the sub-map is shown in Figure 10. Figure 11 shows the perfect fusion of the map. The 
results show that the algorithm adapts to multiple uncertain encounters between robots and improves 
the robustness and fault tolerance of SLAM systems. 

 

 

Figure 10. The sub-map of different areas. 

 

 

Figure 11. Map fusion results using KIIT data set. 

4.  Conclusion 
Through modeling analysis and experimental verification, the results show that the introduction of 
conjunction points can avoid the accumulation of errors caused by the direct use of rigid body 
transformations. At the same time, by introducing the conjunction point, the pose graphs of the robots 
don’t need to be modified when the robots meet each other. The information can be similar to the 
single robot loop closing transmitting between the two pose graphs, thus solving the problem of 
multiple encounters of the robot. The fusion of multiple robot pose graphs and the global optimization 
of the pose map are achieved. 
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