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Abstract. The compressibility properties of systems consisting of generic tetragonal 
beam structures are analyzed and discussed. It is shown that these systems can exhibit 
negative linear compressibility (i.e. NLC) for certain conformations, that is, the 
systems with particular geometry will expand along one direction when compressed 
hydrostatically. It is also shown that through carefully choosing the geometric features, 
one may control the magnitude and range of NLC. 

1.  Introduction 
When materials are compressed hydrostatically, they usually contract in all directions. However, the 
theory of elasticity still brings us some surprises as evidenced by occasional reports of materials [1-6] 
that NLC can actually be exhibited, meaning that some materials can expand along one direction when 
subjected to hydrostatic stress. Such materials are predicted to have a number of applications ranging 
from extremely sensitive pressure detectors, telecommunication line systems, to optical materials with 
high refractive index [1]. 

Some two-dimensional theoretical models and structures exhibiting negative linear compressibility 
have been proposed including truss-type systems [2], bi-material strips [3], systems made from rigid 
units [4], hexagonal honeycombs and wine-rack structures [5]. In view of these models, it is necessary 
to mention that the wine-rack structure is the most widely used model and the success of this model 
lies in the fact that the effect of NLC in other models can be strengthened when the geometry of such 
models become similar to wine-rack structure, for example, in hexagonal honeycombs when h<<l [5] 
and in rotating rigid triangles when r becomes closer to 0 [4]. Here it should be noted that wine-rack 
structure is the special case of the tetragonal beam structures proposed in this paper and the 
compressibility properties of this more generic models have not been discussed. In view of this, in this 
paper, we aim to extend the early work by discussing how the generic tetragonal beam structures can 
be made to exhibit negative linear compressibility. And the expressions of mechanical properties 
including Young's moduli, Poisson's ratios and on-axis linear compressibilities are derived through an 
energy approach. It is shown that this generic structure can exhibit negative linear compressibility for 
particular conformations and it is also shown that the wine-rack structure is not always the best choice 
when one wants to get a NLC met material. 
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2.  Analytical Model 
The tetragonal beam structure taken into consideration in this paper is consisting of beams of two 
different lengths as shown in Fig. 1. It should be noted that the structure relies on the beams being 
rigid in both axial and transverse directions. And these beams are connected through simple flexure 
hinges which enable the structure can deform when it is subjected to a stress and restore the original 
shape when the stress is removed. In particular, the structure modelled is one having dimensions l1, l2, 
θ1, θ2 defined as in Fig. 1. 

The orientation of the structure is such that the unit cell vectors are aligned along the OX1 and OX2 

directions such that the projections of the unit cell in these directions are given by: 
 

1 1 1 2 22 cos 2 cosX l l                                                            (1) 
 

2 1 1 2 2sin sinX l l                                                              (2) 
 

 

Figure 1. (a) Systems consisting of generic tetragonal beam structures, (b) the unit cell. 
 
Note that in this model, apart from the normal conditions that l1>0, l1>0, 0°<θ1<90°, and 0°<θ2<90°, 

the following condition must be satisfied synchronously: 
 

1 1 2 2cos cosl l                                                                 (3) 
 

And from Eq. (1), we can assume that when this unit cell is subjected to a stress, the strain in OX1 
direction can be given by: 
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                                                     (4) 

 
Then the relationship among dθ1 and dθ2 can be derived: 

 

1 1 1 2 2 2sin sinl d l d                                                             (5) 
 

Then we can use an energy approach to derive the expressions of the Young's moduli. The work 
done by each unit cell due to changes in angles for loading along OXi (i=1, 2) axis is given by: 
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                                          (6) 
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And the work done per unit volume due to a strain dε[i] 
i  for loading in OXi directions is given by: 

 

 
2 2
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                                (7) 

 
From the principle of conservation of energy, the expressions of the Young's moduli can be given 

by: 
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Where b is the thickness of this model. Also for this model, the Poisson's ratio may be defined by (i, 

j=1, 2): 
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Where dε[i] 

j  is an infinitesimally small change in OXj direction due to the loading in OXi direction.  
Hence the Poisson's ratio can be given by: 
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Having determined Young's moduli and Poisson's ratios, one may obtain the expressions for βL 

(OXi): 
 

   
2 2

21 1 2 1 2 1 1 2 2
1 1 2 1 22 2 2 2

1 2 1 1 2 2 1 1

1 sin sin sin sin
sin sin sin

2 sin sin cosL
h

b l l l l
OX

E E k l l l

        
  

 
         

(12) 

 

     
2 2

1 2 1 212 1 1
2 1 2 1 22 2 2 2

2 1 1 1 2 2 1 1 2 2

sin1 cos
sin sin sin

2 sin sin sin sinL
h

l lb l
OX

E E k l l l l

      
   

  
         

(13) 

 
And then the area compressibility can be found from the linear compressibility: 

 

     A i j L i L jOX OX OX OX                                              (14) 

3.  Discussion 
In this model, the values of the linear and area compressibility are dependent on the geometry of the 
model including the magnitudes of θ1, θ2, l1 and l2. And particularly, according to Eq. (3), the 
expressions of βL (OX1), βL (OX2) and βA can be viewed as functions of θ1 and l1/l2. In this structure, 
the linear compressibility is clearly illustrated by plots of θ1 and various combinations of l1 and l2 as 
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shown in Fig. 2, which shows that βL can be negative for some values of θ1 and the effect of NLC is 
also influenced by the values of l1/l2. 

 

 

Figure 2. The linear and area compressibilities of this model across various angles of θ1 with kh= 1 
KJ/rad-2, l1= 1mm, b=2mm. 

 
In fact, Eqs. (12 - 13) suggest that NLC can be exhibited in this structure when the following 

conditions are satisfied: 
(1) For negative βL (OX1): (l1/l2•sinθ1+ sinθ2) sinθ1sinθ2< l1/l2•cosθ1sin (θ1+θ2) 
(2) For negative βL (OX2): l1/l2•cosθ1sin (θ1+θ2) < (l1/l2•sinθ1+ sinθ2) sinθ1sinθ2 
Which clearly suggest that NLC in OX1 direction will arise at the exclusion of NLC in OX2 

direction. And not only that, from Fig. 2 we can know that NLC is always exhibited in this model. To 
be more specific, the existence of NLC in OX1 direction and OX2 direction can cover the whole range 
of variable θ1. Here we should highlight the fact that the range of variable θ1 is from 0° to 90° when 
l1/l2≤1, however, once the ratio of l1 to l2 becoming larger than 1, the range of variable θ1 will shrink to 
arcos (l2/l1) ≤θ1≤90° because of the relationship revealed in Eq. (3). Moreover, the effect of NLC in 
OX1 direction can be maximized (i.e. widening the region of NLC and increasing the magnitude of the 
most negative value) to a greater degree by decreasing the magnitude of |l1/l2-1| and particularly the 
maximum effect of NLC in OX1 direction will be achieved when l1/l2=1, which corresponds to the 
wine-rack geometry. From this aspect, wine-rack geometry seems still to be the best choice to obtain 
NLC in 2D structure. However, when we turn our attention to the linear compressibility in OX2 
direction, the superiority of the generic tetragonal beam structure proposed in this paper will be visible. 
The effect of NLC in OX2 direction can be strengthened by decreasing the magnitude of l1/l2 and the 
effect of NLC in this direction is always greater than that in OX1 direction except when l1=l2, and once 
l2/l1<1, the effect of NLC in OX2 direction will be more evident than that in wine-rack structure, which 
may suggest that the effect of NLC in wine-rack structure is not always the best. 

Before we conclude, it is important to highlight that the work presented here indicates that the 
extent of NLC of this model can be tuned to specific values by choosing the magnitude of θ1, l1 and l2, 
which would be useful when one needs to use this structure to attain a met material for particular 



5

1234567890 ‘’“”

2nd International Symposium on Resource Exploration and Environmental Science IOP Publishing

IOP Conf. Series: Earth and Environmental Science 170 (2018) 042109  doi :10.1088/1755-1315/170/4/042109

 
 
 
 
 
 

application. And it should be noted that wine-rack geometry is not always the best choice to achieve 
apparent effect of NLC. Note also that for the mechanism responsible for NLC working, requires that 
the pressure should be exerted on the structure from outside just like the case in methanol 
monohydrate system studied by Fortes ET. al. [6]. Also it is important to highlight that the 
compressibility properties discussed above are only valid for small change of pressure. Finally, it 
should be noted that although two-dimensional models have their limitations when compared with 
three-dimensional models, their superiorities lie in the fact that they are simpler to analyze and also 
they are adequate enough to predict the behavior of particular projections of a complex 3D model 
where the linear compressibility is measured. 

4.  Conclusion 
In summary, it has been shown through analytical modelling that this generic tetragonal beam 
structure can exhibit the special property of negative linear compressibility in certain directions. And 
in some cases, the effect of NLC in this structure can even greater than that in wine-rack geometry, 
which may be very useful when one needs to achieve evident NLC effect. Given the importance of this 
work, it is hoped that the findings obtained here will serve as a blueprint that can be used to either 
design new met materials or widen the search for materials which exhibit NLC. 
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