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Abstract. In order to study the mechanism of the breeze vibration of transmission lines, 
based on the non-linear model of Scanlan's experience, the finite element motion 
equation of the transmission line's breeze vibration is derived, and the dynamic 
solution is carried out. The results show that the parameters of Scanlan vortex force 
have a significant influence on the stable amplitude of the breeze vibration of 
transmission lines. Due to the neglect of the bending stiffness of the cable elements, 
the finite element calculation results of the cable breeze vibration are slightly less than 
the energy balance method, and as the wind speed increases, the error increases 
gradually; when the wind speed is 3m/s, the frequency of the wire vortex-induced 
vibration is 30Hz, which is consistent with the calculation of the Stokehal number. 

1.  Introduction  
For the analysis and calculation of breeze vibration, the energy balance method [1] is widely used at 
home and abroad for decades. Due to the limited scope of application of the energy method and the 
large error, many researchers carried out the finite element analysis of the breeze vibration of the 
transmission line [2], and the breeze vibration load was obtained based on the input energy of wind 
energy. However, in practical engineering, focusing only on the steady-state response of the structure 
caused by vortex-induced vibration. Therefore, the simplified deterministic semi-empirical 
mathematical model has been widely used, especially the model of negative damping, such as 
Scanlan's [3-4] empirical nonlinear model has been widely used. In this paper, using the above model, 
the finite element equation of motion of the transmission line's breeze vibration is deduced, and the 
dynamic solution is solved by the time-history analysis. This analysis method can solve the problem of 
solving the dynamic equation of the breeze vibration, and can further consider the mass and boundary 
conditions of the hammer. Travel wave effects and bending stiffness of transmission lines.  

2.  Finite element model of breeze Vibration of transmission lines 
In order to study the non-linear dynamic problem of the transmission line, the nonlinear dynamic 
equation of the cable must be established. To facilitate the establishment of mathematical models, the 
transmission line is simplified by the following basic assumptions: the bending stiffness, torsional 
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stiffness, and shear stiffness of transmission lines are ignored; large deformations and small strains of 
transmission lines are considered; parameters such as mass, tension, and elastic modulus does not 
change along the length of the transmission line. 

2.1.  Breeze Vibration Finite Element Equation 
The breeze vibration of transmission lines is a typical geometric nonlinear problem. And its elongation 
deformation is generally considered to be a small linear elastic deformation range. Known by 
Hamilton principle: 
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Where: Q  is the kinetic energy density; V  A is elastic strain energy density; W  A is the virtual 

power density. 
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Where: m  A is the unit length quality; c is the damping coefficient; F is the unit force; E  is the 

elastic modulus; H  is the tension of the cable; A  A is the wire area; L is the length of the wire; 
x , y , z  is the wire coordinates; u , v , w  is the wire displacement. 

Substituting (1.2) ~ (1.7) into (1.1), and then the Eq. (1.1) can be rewritten as: 
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The three-node cable element is shown in Figure 1.1, and establish a local coordinate system: 



3

1234567890 ‘’“”

2nd International Symposium on Resource Exploration and Environmental Science IOP Publishing

IOP Conf. Series: Earth and Environmental Science 170 (2018) 042103  doi :10.1088/1755-1315/170/4/042103

 
 
 
 
 
 

 

Figure 1.1. Cable element of three-node 
 

The three-node cable element's shape function is: 
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The shape function matrix is: 
 

 1 3 2 3 3 3N N NN I I I                                                (1.10) 

Therefore, the displacement vector of the node j is expressed as: 
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According to equation (1.5), the relationship matrix of strain and displacement can be obtained: 
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Substituting (1.11) ~ (1.12) into (1.8): 
 

 0 1 2j j j j j j j j j j     M U C U K K K K U P                              (1.13) 

 
In summary, the equations of motion are represented as global coordinates. 
 

   Mu Cu Ku P                                                        (1.14) 
 

Where: M、 K 、C  is mass, stiffness and damping matrix respectively, P  is the load vector. 

2.2.  Elemental stiffness matrix and element mass matrix 
The element stiffness matrix is established in global coordinates and is expressed as follows: 

0 1 2e e e e e   K K K K K                                                 (1.15) 
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Where 0eK , 1eK , 2eK , eK  are linear stiffness, secondary nonlinear stiffness, cubic nonlinear 

stiffness, and geometric nonlinear stiffness matrix, respectively. 
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The unit mass matrix is: 
 

0
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2.3.  Self-damping of Transmission Lines 
This paper uses the self-damping theoretical expression derived by Lu M L [5]. 
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Where: eqE  is the equivalent bending stiffness; Dk  is an empirical factor, Steel core aluminum 

strand advisable 0.54, Steel wire advisable 0.65; 0A  is the maximum amplitude; sk  is the maximum 

bending stiffness reduction factor, advisable 0.5; for Steel core aluminum strand advisable 

0 0.0042K  , 0.4256   . cV is the wave speed of the transmission line, 
8c

g
V L

s a g
 ; g  is the 

gravitational acceleration, sag is the sag; 
From the structural dynamics, the energy consumed by one cycle of the damping force is: 
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Let the energy consumed by one cycle of a single degree of freedom system be equal to the energy 

consumed by one cycle of the self-damping transmission line, that is:  
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With a classically damped n-degree-of-freedom system, the coordinate equation for each of the N 
breeze equations is: 

n n n n n n nM q C q K q P                                                      (1.25) 

 

Where: T
n n nM m  、

T
n n nK k  、

T
n n nC c  , nM 、 nC 、 nK  respectively are the n-th 

order generalized mass, generalized damping, generalized stiffness. 
The damping ratio of the n- th mode shape is: 
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According to the energy balance method, self-damping which is equivalent to wire self-damping 

theoretical expression simulates conventional viscous damping, is: 
 

cn nC C                                                                  (1.27) 

 
Substituting the equation (1.26), the damping ratio of the n-th vibration mode is: 
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2.4.  Breeze vortex force 
Based on Scanlan's empirical nonlinear model, the expression of wire vortex force is as follows: 
 

2
2

1 22

1 1
[ ( )(1 ) ( ) ( ) s in ( )]

2 2y L s t

v v v
F U D Y K Y K C K t

D U D
       


               (1.29) 

 

Studies show that 2 ( )Y K  and ( )LC K  can be ignored when locked, taking 2 1Y Y , so when the 

line reaches a stable amplitude, Equation (1.29) can be expressed as follows: 
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The load of the wire under the wind direction is: 
 

21
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The load vector of the wire unit is: 
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3.  Solving Dynamic Balance Equation 
Solving the modal of (1.14), the mode shape vector can be obtained; then the transmission line 
vibration displacement can be expanded to: 

u Φq                                                                   (2.1) 
Substituting (1.14): 

  Iq Kq F Cq                                                           (2.2) 
 

Where: K  is generalized stiffness; I is a diagonal matrix; C  is generalized damping, F  is the 
generalized load. 

TI Φ MΦ ; TK Φ KΦ ; TF Φ F  
Perform a dynamic time history analysis on equation (2.2), when 0t  : The initial 

displacement 0q and velocity 0
q  are known, so at the first time step t t , there is the following 

expression: 
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4.  Analysis of examples 
Taking the ground line of a certain section of the 1000KV transmission line project of the southeastern 
Shanxi ~ Nanyang ~ Jingmen as an example, the breeze vibration is analyzed. The span is 522m, the 
line type is JLB20B-240, the outer diameter is 0.02m, the unit length quality is 1.5955kg/m, and the 
average running tension is 40677.9N. The physical parameters of the wires are shown in Table 3.1. 
Computation procedures are programmed using MATLAB and calculated according to the above 
method. 
 

Table 3.1. Physical parameters of single conductor 

parameter name unit number 

 
Sectional area 

Aluminum (alloy) A mm2 59.69 
Steel A mm2 179.07 

The total area A mm2 238.76 
Comprehensive coefficient of elasticity E Pa 1.472×1011 

Calculate the total breaking force T N 3.152×105 
Tension level component H N 4.068×104 

Wire diameter d 
Lx 

m 2×10-2 
The horizontal distance between two adjacent towers m 522 

Unit length quality  kg.m-1 1.5955 
 

The transmission line damping is shown in Table 3.2: 
 

Table 3.2. The damping ratio of the transmission line 

Wind speed (m/s) Vibration mode Damping ratio (%) 
2 261 0.010 

2.5 306 0.024 
3 363 0.036 

3.5 408 0.049 
4 449 0.070 

4.5 486 0.097 
5 523 0.13 

Since the test object is a round and smooth steel bar that does not consider the surface roughness of 
the strand, there may be some differences. To accurately determine the vortex coefficient of the 
transmission line, it is necessary to retest the test contents of the above-mentioned documents. 
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Therefore, from Table 3.1 and Table 3.2, the coefficients used in this paper are shown in Figure 3.1 
and Figure 3.2 respectively. 
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Figure 3.1. Value of Y1                                                                        Figure 3.2. Value of Y2 
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Figure 3.3. Comparison between three-node cable element model and Lu M L method 
 

Take 7 typical wind speeds (2m/s~5m/s, interval 0.5m/s) for analysis, corresponding to the 
response frequency of the breeze vibration at 20Hz, 25Hz, 30Hz, 35Hz, 40Hz, 45Hz, and 50Hz. The 
result of the calculation are shown in Figure 3.3. As shown. When the wind speed is 2m/s~3m/s, the 
continuous curve in the figure is calculated according to the literature [6]. The calculation result is 
slightly smaller than that calculated by the energy balance method. With the increase of wind speed, 
the gap gradually increases. When the wind speed is 2m/s, the steady-state amplitude of the cable 
element model is 0.0145m, which is 12.65% less than that of the energy balance method. When the 
wind speed increases to 5m/s, the steady-state amplitude of the cable element model is 0.00157m, 
which is 33.76% less than that calculated by the energy balance method. 

According to Fig.3.3, The gap between the calculation results through the three-node cable element 
model and the principle of energy balance has gradually increased. Since the energy balance method 
calculates the breeze vibration of the transmission line based on the experimental observation and 
induction of the wind input power and the self-damping power calculation formula of the transmission 
line, the influence of the bending stiffness of the transmission line is considered, However, the cable 
element model neglects the bending stiffness.When the cable element model is used to analyze the 
breeze vibration of the transmission line, due to the fact that the bending stiffness is not considered, 
with the increase of the locking frequency, the bending stiffness causes the self-damping of the 
transmission line that is greater than the bending stiffness when considering the bending stiffness. The 
increase gradually increases, leading to a gradual increase in the gap in results. 
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     Figure 3.4. VIV of 3m/s wind velocity                  Figure 3.5. VIV of 5m/s wind velocity 
 

Considering the space limitations, the time history curve of the breeze vibration at wind speeds of 3 
and 5 m/s is selected here. And the calculation step length is taken as 0.001s. The calculation shows 
that the vibrations tend to be stable in the end. 

5.  Conclusion 
(1) The change of the vortex force parameter of Scanlan determines the magnitude of the stable 
amplitude of the transmission line during the breeze vibration. With the increase of the wind speed, the 
vortex-induced vibration locking frequency of the transmission line increases, and the steady-state 
amplitude gradually decreases. 
(2) The cable element model ignores the bending stiffness, and the cable element model is used to 
analyze the breeze vibration of the transmission line. Due to the fact that the bending stiffness is not 
taken into account, with the increase of the locking frequency, the bending stiffness causes the self-
damping of the transmission line that is greater than the bending stiffness when considering the 
bending stiffness. The increase gradually increases, leading to a gradual increase in the gap in results. 
(3) The steady-state response of the breeze-vibration resonance region calculated by the three-node 
cable element model is slightly smaller than that obtained by the energy method. With the increase of 
wind speed, the error gradually increases.  
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