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Abstract. Locally Linear Embedding (LLE) algorithm is one of promising NonLinear 

Dimensionality Reduction (NLDR) method for feature extraction. Like most NLDR algorithms, 

LLE operates in a batch or off-line mode, in other words, for newly coming samples, the old 

data augmented by the new samples must be completely recalculated by LLE algorithm, which 

is computationally intensive. Back propagation neural network (BP) is a nonlinear mapping 

method, and it can learn all the information of a dataset, further, when BP is trained well, it is 

effective to predict new data. Hence, in this paper, BP is combined with LLE (BPLLE) to deal 

with out-of-sample data. Four synthetic datasets and two real datasets are given to demonstrate 

that BPLLE is more valid than several classical incremental LLE algorithms. 

Keywords: Dimension reduction; back propagation neural network; incremental LLE; 

nonlinear mapping. 

1.  Introduction 

In the present world, most of signals are high-dimensional. It is widely acknowledged that high-

dimensional signals containing amount of redundant information is difficult to be analysed and 

diagnosed in the original space [1, 2, 3, 4]. Consequently, it is necessary to project high-dimensional 

signals into a low-dimensional feature space. As an example, we sample 20000 points in each period 

from a rotating machine, that is, the run state of the machine in a period can be described by 20000 

points. However, as we all know that most of the points are redundant, only few points can perfectly 

exhibit the running state of the rotating machine [5]. 

Recently, researchers have been focused on investigating efficient algorithms to obtain the low-

dimensional representations of high-dimensional data [6, 7, 8, 9], and a great quantity of excellent 

algorithms have been proposed [10, 11]. Among these algorithms, LLE [12, 13] exhibits superior 

performances in dimension reduction. In LLE algorithm, the local geometry structure of original high-

dimensional dataset is preserved in embedding space, which provides a better understanding of the 

internal structure of high-dimensional dataset. Moreover, LLE can avoid local minima and only few 

free parameters need to be set. Although LLE has so many advantages, it is inefficient for sequentially 

coming data. 

In order to solve this problem, incremental LLE algorithms [14, 15] have been developed. Usually, 

they can roughly be divided into two types. One is that only the points whose neighbors are changed 
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will be updated, and the low-dimensional representations of the new samples are obtained by 

recomputing original LLE [16], which is still inefficient. The other constructs an explicit mapping 

between a high-dimensional space and a low-dimensional space to deal with the new data. Bengio et al. 

[17] built a unified framework extending for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. 

In this framework, an approximate function is generated by kernel trick. However, the accuracy of this 

method is mainly dependent on the density estimation of a raw dataset. Kouropteva et al. [18] 

proposed a non-parametric incremental LLE i.e., ILLE1 algorithm, where the authors suggested that 

the new data should be embedded by using a linear translation between the neighbors of a new sample 

in a high-dimensional space and a low-dimensional space. A similar algorithm ILLE2 raised in 

literature [19] proposed that the low dimension coordinate of a new data could be acquired by a linear 

combination of its low-dimensional neighbors. In ILLE1 and ILLE2 algorithms, the decomposition of 

cost matrix is avoided, but their accuracies are rough, and they are inefficient for searching the 

neighbors.  

2.  Previous works 

LLE algorithm is firstly proposed by Roweis in 2000, which mainly includes three steps. At the 

beginning, the neighbors of each point are chosen by a similarity measure method; then the optimal 

reconstruction weights are calculated by solving a minimum square error function; at the end, the low-

dimensional coordinates are obtained by preserving the reconstruction weights in embedding space. 

2.1.  Locally lineal embedding algorithm 

Given a dataset 1 2[ , , , ] ,D n
n R = X x x x  , 1,2,, , .D

i R i n =x ix  denotes the thi point, and n  is the sample size. 

LLE maps X into 1 2[ , , , ] ( )d n
n R d D=  Y y y y , where Y  is the low-dimensional coordinate of 

X . 

1. Finding the neighbors for each point. Let 1 2[ , , , ]i k
i i i= X x x x  denote the neighbors of ix , where k  is 

the number of neighbors. i
X  is chosen by K-NN method with using the Euclidean distance. The 

selection of k  is a difficult task, and the specific description can refer to literature [21].  

2. Calculating the reconstruction weight 1 2( , , , )n n
n

= W W W W  that best reconstruct each point from its k  

neighbors, where iW  represents the reconstruction weight of 1,2, , ,i i n= x . iW  can be calculated by 

minimizing a square error function: 
2

1 1
2

( ) 1
k k

j
i i ij i ij

j j

arg min w s t w
= =

= −  = W x x                                                        (1) 

The constrained condition can ensure that the solution of Eq. (1) is translation invariance. If jx  is not 

a neighbor of ix , set 0ijw = . Employing Lagrange theorem on Eq. (1), the optimum solution can be 

obtained as below: 
-1
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Where 1 2 1 2( , , , ) ( , , , )k k
i i i i i i i i i i i i i

= − −  − − −  −G x x x x x x x x x x x x  It is worthy to note that iW  reflects a local 

geometrical relationship. If this relationship is linear, there will exist a linear mapping between the 

high-dimensional space and the low-dimensional space, which can be utilized to tackle new data. 

3. Finally, computing the low-dimensional coordinate based on the reconstruction weights W  by 

minimizing the cost function: 
2
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2

1
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Where j
iy  is the thj neighbor of iy . The constraints in Eq.(2) make the solution of the cost function 

be invariant to translations and rescaling. Y  can be obtained by calculating the bottom 1d +  

eigenvectors of the cost matrix 'M = (I -W) (I -W). According to the normalization constraint
1

1
n

ij

j

W
=

= , zero is a 
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trivial solution that should be excluded, hence, the remaining d eigenvectors are the final low-

dimensional coordinate Y . Furthermore, M  is a large sparse symmetric matrix, which is expensive to 

compute the eigenvalues and eigenvectors, so we should avoid to recalculating the matrix M , when 

deals with new data. 

2.2.  Two classical incremental LLE algorithms 

ILLE1 and ILLE2 are two classical incremental LLE algorithms, which all belong to linear method. 

The specific description of ILLE1 and ILLE2 are expressed as follows: 

ILLE1: Let 1n+x  denote a newly coming point, 1 1 2
1 1 1[ , , , ] n k

n n n
+

+ + += X x x x  denote the neighbor of 1n+x , 

and 1 1 2
1 1 1[ , , , ]n k

n n n
+

+ + += Y y y y  represent the low-dimensional neighbor of 1nx + . For calculating low-

dimensional coordinate 1n+y , two hypothesises must be satisfied: 1) high-dimensional space is local 

linear; 2) the points that are close in the high-dimensional space must be close in the low one. Then the 

linear relationship between the high-dimensional space and the low-dimensional space can be 

approximately described as 1 1n n+ +=Y AX , where d DR A  is an unknown linear transformation matrix. 

Hence, we can obtain A  by 
†1 1( )n n+ +=A Y X , where 

†1( )n+
X is a pseudo inverse matrix. According to the 

above assumptions, 1ny +  can be calculated by 1
1

n
n

+
+ =y AY . 

ILLE2: For one thing, we compute the weight, 1nW + , which best reconstruct the point 1n+x  from its 

k  neighbors in high-dimensional space. The reconstruction weight 1nW +  can be computed by 
†

1 1( )n nW X x+ += . Then 1ny +  is found by 
1

1 ( 1) 11

j 1

k
j n

n n j nnw +
+ + ++

=

= =y y Y W , where  i 1
j

n+y s the low-dimensional 

representation of 1
j

n+x . 

Remark 1. It is noted that, if we remove the constraint, ( 1)

1

1
k

n j

j

W +

=

= , ILLE1 and ILLE2 are 

essentially equivalent. 

Let 1y  and 2y represent the output of ILL1 and ILL2, respectively. 
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Then                   1 2=y y  

3.  Incremental LLE based on BP 

3.1.   BPLLE algorithm 

Ahmed et al.[22] proposed that a nonlinear mapping could be constructed from the embedding space 

to input space. Hence, any input data can be represented by the nonlinear mapping with the 

corresponding low-dimensional coordinate. Hence, it is natural to consider constructing a nonlinear 

mapping from high-dimensional space to embedding space. BP is a nonlinear mapping algorithm, 

which can approximate any function with expecting precision, and it can learn all the information from 

samples. So, it is suitable to employ BP to predict the low-dimensional representations of out-of-

sample data. BP consists of input layer, hidden layers and output layer. Each layer may contain a 

number of neurons. A representative three layers of BP network structure and a neuron [23] are shown 

in Figure 1. A neuron actually is an activation function. The most commonly used neuron is sigmoidal 

function, and it can be written as follows: 
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Where x  is a input. Two neurons ,i j  are connected by a weight ijW . After the network is 

determined, only the parameters W need to be computed, where W  denotes all the weights of BP. Let 
E  is the difference between the expectation value and the predicted value computed by BP, then W  

can be obtained by minimizing E  with an iterative process of gradient descent. Gradient descent can 

be described as follows: 


 =
E

E
W

 

Then the new weight can be by update by: 
( 1) ( ) ll l + = − W W E  

M

Input
layer

H idden
layer

O utput
layer

 
(a)BP neural network 

SU M

 
(b) Neuron 

Figure 1: Three layers BP neural network 

Where l  denotes the l th iteration, l  represents step size. 

In BPLLE algorithm, LLE is only used to handle the raw dataset to obtain training data, while BP 

is employed to map the out-of-sample data to a low-dimensional space. The proposed method 

overcomes the shortcomings of ILLE1 and ILLE2. The specific description of BPLLE is shown in 

Algorithm 1. 
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Figure 2. Calculating procedure of BPLLE algorithm 3.2 Analysis of BPLLE algorithm 

3.2.  Analysis of BPLLE algorithm 

3.2.1 Analysis of LLE. The final result of LLE is quite sensitive to the number of neighbors k  and intrinsic 

dimensionality d , which have been investigated in host of literatures [24, 25]. If k  is too small, the high-

dimensional space will be divided into discrete subspace that the projection cannot express any global properties; 

if k  is too large, samples in different subspace may be taken into the same one, in this way, the projection 

cannot show the intrinsic nonlinear structure of manifold. Furthermore, when k  is large enough, LLE operates 

like PCA.  All these facts are illustrated in Figure 3. The results are stable over a wide range of k , but do break 

down as k  becomes too small or large. 

 
(a) S curve      (b) k =5 

 
(c) k =6       (d) k =12 

Input: Raw dataset X  and out-of-sample 1n+x . 

Output: low-dimensional coordinate 1n+y  of 1n+x . 

(1) Compute the low coordinate Y  of X by LLE, as 

described in sections 2.1. 

(2) Select a suitable BP neural network structure, 

learning rate, and learning function. 

(3) Normalize the training dataset X  and its 

corresponding low-dimensional coordinate Y , 

then BP network is trained by the normalized 

data. If the trained BP cannot reach the expected 

result, return to (2), otherwise, go to the next step. 

(4) The new low-dimensional coordinate 1n+y  of out- 

of-sample data can be calculated by the trained 

BP.  
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(e) k =15       (f) k =80 

 

(g) k =100  (h) PCA 

Figure 3: LLE operates S curve to 2 dimensions with different neighbors k   

 

The optimal k  can be estimated by the distribution of a dataset, but the distribution is difficult to 

be accurately obtained. A straightforward way for selecting k  is to evaluate how well the high-

dimensional property is preserved in the low one. Olga[26] suggested to calculate Spearman rank 

correlation coefficient   that assessed the correlation of rank order between two variables.   can be 

defined as below: 

2

1

2

6 ( ( ) ( ))

1
( 1)

n

i

d i d i

n n
 =

−

= −
−

 x y

 

where ( )d ix  and ( )d iy  represent the ranks of pairwise distance in the high-dimensional space and the 

low-dimensional space, respectively. The larger value of  , the order of the two variables is more 

similar, and the best value is 1. 

If the matrix iG  is singular, i.e., a small perturbation can have a very large effect on W . It is advised 

that a regularization item iG [22] should be added. 

i i kG G rI= +  

where r  is a regularization parameter, k k
k R I  is an identity matrix. The value of r  usually can be 

estimated by ( )ir tr
k

=


G , where   is a small positive value[22], and ( )tr  represents a matrix trace. We 

generate a dataset of S curve with signal-to-noise ratio (SNR) of 30db, and LLE with difference r  is 

employed on the dataset. As it can be shown in Figure 4, the final result is sensitive to r . 
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(a)Noisy S curve (b) 110 ( )r tr G'G−=
 

 

(c) 310 ( )r tr G'G−= (d) 610 ( )r tr G'G−=  

Figure 4: LLE operates on noisy S curve with different regularization item r  

 

Intrinsic dimension d  can be utilized to characterize the quantity of information. Liu et al.[27] 

showed that a small value of d  may lose significant information, whereas a large one may remain too 

much redundant information. Correlation dimension algorithm is one of the most classical method to 

estimate d , and it can be computed by using the following equation[28]: 

0

( , )
lim

logC n
d

log



→
=

−
 

where   is a radius and ( , )C n   is correlation integral that is a statistical average. It can be 

obtained from: 

( , )
number of distances less than

C n
sample size


 =  

the computational cost of every step of LLE are listed in Table 1. As pointed out from Table 1, 

finding the neighbors and calculating the low-dimensional coordinate are computationally expensive 

in LLE. In practical application, LLE only provides the training dataset for BP, so the calculation 

speed of LLE does not impact the one of BPLLE. 
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Table 1: Each step computational cost of LLE 

Step Action performed % of runtime 

1 Find k neighbors 24 

2 Calculate reconstruction weights matrix 17 

3 Calculate low-dimensional coordinate 59 

 
3.2.2 Analysis of BP. One of the most important parameter for BP is the network structure that control the 

complexity and accuracy of BP. The selection of BP network structure is to determine the number of hidden 

layers and neurons. A simple network structure has faster calculation speed, but it does not have enough 

capability to learn all patterns, which will reduce the performance of BP. A complex network structure can 

contribute to improving learning and predictive capability, however, it greatly increases the computational 

complexity. So far, there still is no effective method to decide the selection of BP network structure, and the 

most commonly used method is to repeat the experiment until a promising result is gotten. Moreover, the 

predictive capability of BP is related to the training data. If the training data contain all the classes of a dataset, 

BP can be trained well, then the predictive capability of BP will be improved. However, too many training 

data will lead to overfitting, which will decrease the performance of BP. In addition, the computational 

complexity and storage of BP rapidly increase, with the increasing dimensionality of dataset, and it may even 

cause the program to stop. Hence, appropriate network architecture, complete training data, and appropriate 

dimensionality of dataset are premises for BPLLE to work well. The computational process of BP can be 

divided into two steps: 1) train BP network; 2) predict new points. The computational cost of BP is mainly 

occupied by the first step, fortunately, similar to LLE, this step also belongs to an off-line mode. In the next 

section, we will proved that BPLLE has more faster speed than the ones of ILLE1 and ILLE2. 

4.  Experiments 

 

In this section, four synthetic datasets and two real datasets are utilized to verify BPLLE algorithm. 

All the datasets are summarized in Table 2. Swiss roll, Punctured Sphere and Toroidal Helix are three 

synthetic datasets that are the standard benchmarks for dimension reduction algorithms. The Random 

data is generated by random function in MATLAB as an approximation to a strong nonlinear dataset. 

For experimental study, each synthetic dataset is divided into two subsets: training and test data. 

 
Table 2: Datasets operated on experiments 

Dataset N points Dimensionality 

Swiss roll 1500 3 

Punctured Sphere 1500 3 

Toroidal Helix 1500 3 

Wine 178 13 

Random data 1500 30 

Iris data 150 4 

4.1.  Synthetic datasets 

In order to prove that the proposed algorithm is feasible, a qualitatively analytic experiment is 

introduced. In each class dataset, 1495 points are collected as training data and the remaining 5 points 

as test data. First, the training dataset is mapped into embedding space; then the test data is tackled  

by three incremental methods: BPLLE, ILLE1, and ILLE2, respectively. The experimental results are 

shown in Figure 5. The blue 'o' points represent the low-dimensional coordinates of the training data, 

and the points filled with red color are the low-dimensional representations of the test data. It is 

obvious that all the test datasets processed by the three incremental LLE are visually almost the same, 

therefore, BPLLE is feasible to deal with out-of-sample data.  
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(a) BPLLE 

 

 
(b) ILLE1 
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(c)ILLE2 

Figure 5: Qualitative analysis of the incremental LLE 

 

Furthermore, to indicate the advantage of the proposed method, we quantitatively analyse the three 

incremental methods by Spearman rank correlation that is a nonparametric method. We randomly 

collect 100 points from Swiss roll dataset as test data and 1400 samples as training data. Similar to the 

above experiment, the training dataset is mapped into a low-dimensional space, then the 100 test 

points are calculated during 20 iterations. The final results are indicated in Figure 6. As shown in 

Figure 6 (a), the red curve is always at the top of the green and black curves, i.e., the order of the 

pairwise distances is well preserved by BPLLE. Moreover, observing Figure 6(a), (b), and (c), it is 

quite clear that the three curves become more and more closer with the sample size increasing, i.e., the 

Spearman rank correlation values of ILLE1 and ILLE2 will gradually get close even exceed to the 

ones of BPLLE, when the sample size is large. This is because that the larger sample size, the data 

distribution is more compact and the local part of the dataset is more similar to linearity, which can 

improve the performance of ILLE1 and ILLE2. In addition, we estimate   for all the datasets, and the 

largest value of Spearman rank correlation value is recorded in each iteration. As shown in Table 3, 

BPLLE performs the best. 
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Figure 6: Spearman’s rho measurement with different sample size 

 

We redo the second experiment and record the computational cost of each algorithm. As shown in 

Figure 7, we can see that the green curve and the black curve are almost coincident, that is, ILLE1 and 

ILLE2 have the similar complexity. BPLLE is faster because it avoid looking for the neighbors of new 

data, and a trained well BP is efficient to deal with new data. Hnece, the complexity of BPLLE is the 

lowest. 
Table 3: Spearman rank correlation value for the datasets 

 

Dataset Points/Per iteration ILL1 ILL2 BPLLE 

S curve 10 20 18 22 

Wine 3 5 2 7 

Random data 10 15 0 55 
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Figure 7: Time consuming calculations 

4.2.  Iris dataset datasets 

Iris dataset presented in Fishers article is widely used in extensive literatures to verify recognition 

algorithms. Iris dataset can be divided into three categories, and each category contains 50 points. A 

three-dimensional plot obtained by arbitrarily selecting three dimensions of Iris dataset is shown in 

Figure 8(a), in which one category is linearly separable, but the other two categories are intertwined 

with each other, making it difficult for linearly separated in the original space. BPLLE, ILLE1, ILLE2 

and LPP algorithms are utilized to Iris data with different number of training and test data, then SVM 

is employed to calculate the recognization accuracy. The final results are shown in Figure 8(b). Since 

LPP is a linear algorithm, its recognization accuracy is the lowest. The recognization accuracies of 

ILLE1and ILLE2 are almost the same, which can also demonstrate that both of the algorithms are 

equivalent. Although LLE is a nonlinear algorithm, ILLE1 and ILLE2 deal with out-of-sample data 

with linear mode, further, the final results are also depend on the selection of neighbors. As we all 

known, it is hard to accurately find the neighbors of a point in a high-dimensional space. However, a 

trained well BP handles out-of-sample data with nonlinear mode. Therefore, the recognization 

accuracies of ILLE1and ILLE2 are lower than the one of BPLLE. 
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Figure 8: (a) Three dimension Iris data; (b) Recognition accuracy with different number of training data 

5.  Conclusion 

In this paper, two classical incremental LLE algorithms are analyzed, and their drawbacks for out-of-

sample data are pointed. In order to overcome these drawbacks, BPLLE is proposed. In BPLLE 

algorithm, training samples are mapped into low-dimensional space by LLE, and BP network is 

trained by the original data and their corresponding low-dimensional representations, finally out-of-

sample data is processed by the trained BP. BPLLE can avoid searching neighbors of a new sample, 

by which the computational speed is greatly improved. In addition, BPLLE can learn knowledge from 

all samples, and has strong predictive capability, which is advantaged for handling nonlinear 

distribution dataset. Experimental results show that BPLLE is effective. However, there still are some 

open problems in BPLLE, such as how to choose the suitable BP neural network architecture, and 

BPLLE costs too much when the data dimensionality is too high. All these should be further studied. 
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