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Abstract. A generalized regression neural network is used to predict the corrosion rate 
of metals in marine environment. The environmental temperature, oxygen content, pH 
value, salinity and potential are taken as input, and the corrosion rate is taken as output. 
A3 steel was selected to test the 25 sets of data, 18 groups of data were selected for 
training, and 7 sets of data were used as the verification. The results show that the 
generalized regression neural network prediction, select the default S value, the 
average prediction error is 5.72%, higher than the BP neural network was used to 
predict the 6.56%, using cross validation method to select the optimal S value, the 
optimal value of S under the average prediction error of the forecast is 2.38%. It 
shows that the prediction of corrosion rate of metal materials in marine environment 
by generalized regression neural network is feasible in technology, and has high 
prediction accuracy and application value. 

1.  Introduction 
In recent years, with the development of society and science and technology, people pay more 
attention to the vast ocean. But including marine shipping, offshore oil and marine nuclear power, 
marine technology cannot do without a variety of materials and metal materials as the main force of 
marine products and equipment, the corrosion is very serious, marine corrosion loss total corrosion 
losses 1/3[1]. At the same time, because most of the offshore structures are far away from the land, the 
maintenance and maintenance of the offshore structures are very inconvenient, and the cost of 
maintenance and repair is expensive. Therefore, it is of great significance to predict the corrosion of 
marine structural products so as to take corresponding measures in advance to reduce the loss. 

The development of modern mathematical theories and methods provides a strong theoretical 
foundation and technical support for the quantification and modeling of corrosion science. Cai 
Jianping and Cohen, Institute of metal research, Chinese Academy of Sciences, predict corrosion of 
metals in the atmosphere by neural networks [2]. Ren Zhenjia et al. [3-4] measured the influence of 
different crude oil on pipeline corrosion rate by weightlessness experiment, and established artificial 
neural network models such as BP, GA and GA-BP algorithm. Liu Wei et al. established a prediction 
model of corrosion research and a prediction model of corrosion rate in actual seawater environment 
by using grey neural network, respectively [5-6]. Haque and other [7] neural networks were used to 
study the corrosion fatigue properties of DP steel. Kamrunnahar [8] et al. Used neural network as a 
data mining tool to predict the corrosion behavior. But the neural network has some limitations, the BP 
neural network is a feed-forward neural network, mainly based on the prediction error adjustment of 



2

1234567890 ‘’“”

2nd International Symposium on Resource Exploration and Environmental Science IOP Publishing

IOP Conf. Series: Earth and Environmental Science 170 (2018) 032130  doi :10.1088/1755-1315/170/3/032130

 
 
 
 
 
 

network weights and thresholds, so that the BP neural network to predict the output approaching the 
desired output, but if the sample is less cannot guarantee the prediction accuracy. GRNN (generalized 
regression neural network) on a radial neural network has strong nonlinear mapping capability and 
flexible network structure and a high degree of fault tolerance and robustness, suitable for solving 
nonlinear problems, and in a few data, the prediction effect is good, high precision. 

2.  Establishment of generalized regression neural network model 
The generalized regression neural network is composed of four layers, which are input layer, mode 
layer, summation layer and output layer corresponding network input X=[x1, x2... xn] is Y=[y1, y2,... 
yn]T. 
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Figure 1. The structural diagram of generalized regression neural network 

 
(1) The input layer 
The number of neurons in the input layer is equal to the dimension of the input vectors in the 

learning samples, and the simple distribution units on each neuron are directly transferred to the model 
layer. 

(2) The model layer 
The number of neurons in the model layer is equal to the number of learning samples n, and the 

neurons correspond to different samples: 
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The output of the neuron I is the exponential form of the square of the    2 T

i i iD X X X X    

Euclid distance between the input variable and its corresponding sample X. In the formula, the input 
variables for the network and the learning samples corresponding to the I neurons are presented. 

(3) The summation layer 
The summation layer is calculated with the (1), it is the weighted sum of all model neurons output 

between the pattern layer in the i neurons and the sum of the layer of j molecules for neurons and 
weights for the i output sample medium first j elements, transfer function: 
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(4) The output layer 
The number of neurons in the output layer is equal to the dimension of learning k output vectors in 

the sample, each neuron will output division and layer, the corresponding output neuron J 
^

( )Y X  
estimation result of J elements, and its value is: 

nj
j

D

S
y

S
  j=1, 2…, k                                                           (3) 

Based on the theory of generalized regression neural network, nonlinear regression analysis, the 
regression of non independent variable Y with independent variable x makes the calculation of Y with 
maximum probability value. The joint probability density function of the random variable x and the 
random variable y is f (x, y). When the observed value of X is X, then the Y is relative to the X 
regression, that is, the conditional mean value is : 
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Y  is the predicted output of Y under the condition that the input is X. 
Using the Parzen nonparametric estimation, the density function ^
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In the formula, Xiand Yi are the sample values of random variables X and Y; n is the sample 

capacity; P is the dimension of the random variable x; the width coefficient of the Gauss function is 
called the smoothing factor. 

Replace the 333 with
^

( , )f X y , and exchange the integral and the order of addition: 
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Because of
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 , the output of the network is ^

( )Y X  when the two integral is calculated. 
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The estimated value of 

^

( )Y X  is the weighted average of Yi of all observed values, and the weight 
factor of Yi is the exponent of the square of the Euclid distance between Xi and X of the corresponding 
sample. 

Through the above steps of generalized neural network prediction model is established, we use the 
measured data to verify the accuracy of the sea test [9] obtained the corrosion rate data of Q235 steel 
in seawater under different environmental parameters of a total of 25 groups, including 5 kinds of 
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environmental impact parameters and the parameters of the corrosion rate data in each group 
specifically, as shown in the following table: 
 

Table 1. The Q235 steel corrosion rate in various marine environmental conditions 

Serial 
number 

Ocean 
Temperature/℃ 

Dissolved 
Oxygen/mg·L-1 

Salinity 
103mg/L

PH 
Redox 

Potential/mV 
rate µA·cm-2 

1 24.27 0.8 32.56 8.1 171 2.55 
2 27.45 2.6 35.37 7.96 287 10.96 
3 27.23 4.2 31.94 7.89 289 12 
4 28.72 6.8 32.21 8 325 13.33 
5 28.52 8.4 32.1 8.01 345 17.31 
6 28.45 9.9 31.95 7.93 309 22.48 
7 23.95 7.61 9.17 8.04 231 8.13 
8 24.95 6.8 16.29 7.82 341 9.07 
9 24.6 7.52 24.42 7.57 210 10.74 

10 27.32 3.12 29.31 8.2 281 13.59 
11 24 7.95 30.2 8.1 324 12.89 
12 27.78 6.35 31.38 7.2 356 13.61 
13 27.97 6.05 31.94 6.6 384 14.6 
14 30.7 7.15 31.74 6.5 401 15 
15 29.37 6.82 30.12 6.2 414 15.39 
16 25.9 6.71 30.1 5.1 378 18.22 
17 29.35 6.09 29 6.3 400 16.45 
18 27 6.7 30.7 7 350 12.6 
19 27.9 5.15 31.5 9.2 264 9.08 
20 25.55 6.67 31 8.09 320 12.49 
21 24.31 6.42 40.67 7.88 250 8.75 
22 24.11 6.38 41 7.98 228 8.99 
23 17.45 7.48 34.08 8.1 135 17.05 
24 21.95 8.28 34.64 7.95 113 17.34 
25 27.19 4.91 33.5 7.99 275 15.48 
 
In the data, choose to train 18 sets of data were predicted and compared with the actual value of 7 

sets of data, each data of the environmental temperature, oxygen content, pH, salinity and potential as 
input, the corrosion rate as the output, to establish the mapping relation between input and output. 
Because the dimension of each environmental parameter is different from other parameters, and the 
numerical range is also different, so the data normalization is needed in the prediction system. The 
above data and calculation process are calculated by importing Matlab to write the calculation code, 
and the data are as follows: 
 

Table 2. The prediction results and relative errors using generalized regression neural network 

Serial number 19 20 21 22 23 24 25 
Measured values 9.08 12.49 8.75 8.99 17.05 17.34 15.48 
Predicted values 9.56 12.01 9.21 9.53 15.51 17.85 14.29 

Relative error (%) 5.29 3.84 5.26 6.01 9.03 2.94 7.29 
 
The above data are predicted by generalized regression neural network, and are compared with the 

predicted values of BP neural network. 
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3.  Establishment of BP neural network model 
A multilayer feedforward neural network is used in BP neural network. The main feature of the 
network is that the signal is transmitted forward and the error is transmitted back. In forward transfer, 
the input signal is processed from the input layer through the hidden layer until the output layer. The 
state of neurons in each layer only affects the state of the next layer of neurons. 

Analysis of measured data, according to the nonlinear function fitting characteristics determine the 
structure of BP neural network, the environmental temperature, oxygen content, pH, salinity and the 
potential of the 5 parameters as the input of the training network, the corrosion rate as the output, due 
to the nonlinear function of 5 input parameters, an output parameter, select the node of hidden layer 
the number is 10, so the structure of the BP neural network 5-10-1. Also select 25 sets of data in the 1-
18 sets of data as training data, select the 19-25 sets of data as the predicted data, in Matlab 
programming through calculation, the results are as follows: 

 
Table 3. The prediction results and relative errors using BP neural network 

Serial number 19 20 21 22 23 24 25 
Measured values 9.08 12.49 8.75 8.99 17.05 17.34 15.48 
Predicted values 8.85 11.22 8.36 9.86 16.32. 18.31 16.83 

Relative error (%) 2.53 10.16 4.46 9.68 4.28 5.59 8.72 
 
From the above data we can see that the original data were predicted by GRNN neural network of 

the original, 7 sets of data and forecast the income compared to the values of the maximum error is 
9.03%, the average error is 5.72%; the value predicted by BP neural network, the forecasting results 
show that the prediction error was 10.16%, the average error is 6.5%; from the above analysis results, 
the prediction results using GRNN network analysis results of the maximum error and the average 
error was less than BP neural network, GRNN network in fewer samples can be used to predict the 
corrosion rate and the prediction accuracy of BP neural network to high. 

4.  Choosing the optimal extended velocity value 
In the GRNN neural network, which is used to predict the result of the above mentioned methods, the 
spread value is the default value of 1, but the default value is not the optimal value, this method uses 
cross validation, write the corresponding calculation program to obtain the best spread value, the 
optimal spread value on corrosion rate prediction. By calculating the above steps, the optimal spread 
value is 0.6. Under the optimal spread value, the predicted results are as follows: 
 

Table 4. The relative error of generalized regression neural network under the optimal S value 

Serial number 19 20 21 22 23 24 25 
Measured values 9.08 12.49 8.75 8.99 17.05 17.34 15.48 
Predicted values 9.23 12.18 9.01 9.21 16.62. 17.83 15.21 

Relative error (%) 1.65 2.48 2.97 2.44 2.52 2.82 1.74 
 
From the above prediction results, the maximum error of the prediction results is 2.97% and the 

average error is 2.38% under the optimal spread value. Compared with the default spread value, the 
accuracy of the result is improved greatly. The results of the three predictions are compared with those 
shown in figure 2: 
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Figure 2. The error of prediction results under different forecasting models 

5.  Conclusion 
According to the prediction results in the previous paper, the BP neural network is used to predict the 
corrosion rate of Q235 steel. The average error between the predicted values of the 7 sets of prediction 
data is 6.5% compared with the actual value. 

The corrosion rate of Q235 steel by generalized regression neural network prediction, choose the 
default diffusion speed value, by comparing the predicted results and measured results, the average 
error of 7 prediction data is 5.75%, the precision is higher than that under the same conditions by using 
BP neural network to predict the results of average error, which has high accuracy. 
In the generalized regression neural network, the optimal expansion speed is calculated by the cross 
operation method. Under the optimal expansion speed, the prediction error of the 7 sets of data is 
2.38% compared with the measured value. At the same time, the accuracy of the prediction results is 
greatly improved compared with the default value. 

In the case of less sample data, generalized regression neural network can be used to predict the 
corrosion rate under ocean conditions, and through cross validation to select the optimal S value can 
get higher accuracy, through multi prediction of the corrosion rate in advance can take corresponding 
measures to protect materials and reduce due to corrosion caused the loss. 
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