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Abstract. In speech communication scenes, the microphone signals are often weakened 
by reverberation and ambient noise. Reverberation can be divided into an early part 
that is comprised of the direct speech and some early ones and a late part. In this paper, 
an advanced expectation-maximization (EM) algorithm for multimicrophone speech 
dereverberation and noise reduction, extending EM by taking the noise statistics into 
account, is proposed. This method aims at estimating the early parts filtered by early 
transform functions (ETFs). The EM algorithm is executed in two steps. In the E-step, 
the filtered early speech is calculated. Then, in the M-step, the ETFs, the power 
spectral density (PSD) of the filtered early speech and the late reverberation, and the 
spatial coherence matrix of the late reverberation are estimated. This algorithm is 
evaluated using an open-source room impulse responses (RIRs) database with a 
reverberation time of 0.36s and 0.61s under different signal-to-noise (SNR) conditions. 
It is proved an improvement compared with the original EM method. 

1.  Introduction 
With the development of science and technology, we have ushered in the era of artificial intelligence. 
To achieve human-computer interaction in artificial intelligence, automatic speech recognition (ASR) 
is crucial. In practical application scenarios, the signal received by microphone arrays often contains 
noise and reverberation formed by the reflection of the wall which degrade speech intelligibility and 
accuracy of ASR systems. Highly reverberant speech is equally difficult for machines and people to 
understand and can easily lead to hearing fatigue. With the increase in demand for high-quality voice, 
dereverberation and noise reduction has become essential speech enhancement technologies. Existing 
joint dereverberation and noise reduction methods can be mainly divided into spectral enhancement 
techniques, multichannel equalization techniques [1~6], and probabilistic model techniques [7]. 

Spectral enhancement techniques can be implemented in a two-stage approach. A common two-
level approach is based on multichannel Wiener filter (WCMF), which divides the MCWF into a 
minimum variance distortionless response (MVDR) beam former (BF) and a single-channel post 
filter(PF)[8]. The MVDR BF is usually implemented in a generalized sidelobe canceller (GSC) 
structure which consists of three parts in two branches. The fixed beam former (FBF) is the upper 
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branch responsible for preserving the response required for the signal of interest. The lower branch is 
separated into two parts, a blocking matrix (BM) and a noise canceller (NC). The BM blocks the 
signal of interest while the NC eliminates the interference. The generalization of MVDR BF is linear 
constrained minimum variance BF (LCMV BF). LCMV BF can be applied to construct a beam model 
that satisfies a series of directional constraints while minimizing the power of output noise and can 
also be used to achieve dereverberation and noise reduction [9]. 

Multichannel equalization techniques based on multichannel inverse theorem (MINT) [10] are in 
the category of reverberation cancellation. These methods aim to reconstruct the RIRs between the 
source and the microphone array. In [11], two joint dereverberation and noise reduction time-domain 
techniques are proposed. The first technique explicitly considers the noise data in regularized partial 
MINT (RPMINT). Besides the regularization parameters in RPMINT, it introduces additional weight 
parameters that weigh the performance between dereverberation and noise reduction. The second 
technique combined with dereverberation and noise reduction MCWF (MCWF-DNR) takes into 
account both speech and noise data, and uses the RPMINT filter to calculate a dereverberated 
correlation signal for the MCWF. 

Based on probabilistic model techniques, acoustic transport system is usually modeled as an auto-
regressive process [12, 13] or using the convolution transfer function. The spectral coefficients of 
clean speech are modeled as a Gaussian distribution [12]. Dereverberation is then achieved by 
maximizing the likelihood functions of all unknown model parameters. Expectation-maximization 
(EM) algorithm is one of the probabilistic model technologies. 

In our paper, an advanced EM algorithm for multimicrophone speech dereverberation and noise 
reduction is proposed. Late reverberation, anechoic speech and additive noise are assumed to be 
mutually independent and modeled by zero-mean multidimensional Gaussian components. The early 
reverberation is modeled by multiplication of ETFs and the anechoic speech. The PSD matrix of late 
reverberation is time-variant while the spatial coherence matrix of that is time-invariant since the 
locations of source and microphone array are known and fixed. The anechoic speech, the late 
reverberation and the noise are defined as the hidden data. In E-step, the estimation of anechoic speech 
is completed by a MCWF. The other parameters are estimated in M-step following. In previous works, 
the PSD matrix of noise is assumed known. As in the practical applications, the noise is unknown. We 
have incorporated the PSD matrix of noise into the hidden data, and showing by doing so, the noise 
reduction performance can indeed improved. 

The remainder of this paper is organized as follows. In Section 2-1.1, we formulate the problem. In 
Section 2-1.2, the EM algorithm is derived. In Section 3, the results and the evaluation of the proposed 
approach are present in the form of a chart. Section 4 is allocated for concluding the whole works. 

2.  Configuration And Notation 

2.1.  Problem Formulation 
We consider a reverberant system in a noisy environment. There is a sound source and I microphones 
settled as a line array. The signal received by the ith microphone is )(nyi  , i=1,...,N, and when time 

subscript is n: 
 

)()()()( ii nvnsnhny i  

                                                                     )()( ii nvnx                                                                    (1) 

 
Here )(i nh is the RIRs between the sound source and the microphone array, )(ns is clean speech, 

)(i nx is reveberant speech, and )(i nv is additive noise. Let )(, nh ie denotes the direct path and early 

reflections of RIRs and )(, nh mr denotes the late reverberation data of the RIRs, the signal received by 

the ith microphone in (1) can be written as: 
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)()()()()()( ,, nvnsnhnsnhny iiriei 

 
                                                      )()()( ,, nvnxnx iirie                                                       (2) 

 
Taking STFT to (2), we get: 
 

                                              ),(),(),(),( , kmVkmRkmXkmY iiiei                                              

(3) 
 

Here m represents the time index, k represents the frequency index. ),(, kmX ie  can be modeled as 

the product of anechoic speech and ETFs: 
 

                                                         ),()(),(X ,, kmSkGkm ieie                                                           (4) 

 
Here )(, kG ie is the ETFs, ),( kmS is the anechoic speech. Combining I microphone signals in a 

vector form yields:  
 

                                                ( , ) ( , ) ( , ) ( , )em k m k m k m k  y x r v                                                 (5) 

 
                                                            ( , , )( )) ( ,m k S m km ke ex g                                                        (6) 

 
Where 

1 2( , ) [ ( , )  ( , )... ( , )]T
Nm k Y m k Y m k Y m ky , ,1 ,2 ,N( , ) [ ( , )  ( , )... ( , )]T

e e e em k X m k X m k X m kx  

1 2( , ) [ ( , )   ( , )... ( , )]T
Nm k R m k R m k R m kr , 1 2( , ) [ ( , )   ( , )... ( , )]T

Nm k V m k V m k V m kv  

,1 ,2 ,N( ) [ ( )  ( )... ( )]T
e e e ek G k G k G kg  

Replace (6) with: 
 

e( , ) ( ) ( , )e Fm k k S m kx g                                                          (7) 

 
Where 

),()()(),( kmSkkkmS e
H

F gq  

)()(

)(
)(

kk

k
k

e
H

e
e gq

g
g   

Reverberation, anechoic speech and additive noise are assumed to be mutually independent and 
modeled by zero-mean multidimensional Gaussian components. Let PSD of the reverberation is time-
varying and spatially coherent matrix is time-invariant, the probability density function (p.d.f) of late 
reverberation can be modeled as:  

 

))(),(;);,(())(),,();,(( kkmkmNkkmkmf R
c

R   0rr                             (8) 

 
Here: 

)exp(
1

),;( 1xx0x 


 H
N

cN
  
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x represents the Gaussian vector,  is the PSD matrix, and the invariant spatial correlation matrix
)(k  describes the spatial characteristics of the late reverberation field, ),( kmR represents the time-

varying PSD of late reverberation. So: 

}),({
1

),(
2

1




N

i
iR kmRE

N
km  

}),({),(
2

F kmSEkm
FS  , )),(,0);,(()),();,(( kmkmSNkmkmSf

FF SF
c

SF    

Define )],(),...,,1([)( kMkk RRR    and )],(),...,,1([)( kMkk
FFF SSS   . The entire 

parameter set for the problem is: 
 

)}(),(),(),(),({)( kkkkkk vReSF
  gθ                                           (9) 

 
Where M is the total number of frames. Define )],(   ...  ),1([)( kMkk TT yyy  , the PSD is: 

 

)),(,);,(())();((
1

kmkmNkkf c
M

m
y0yθy 



                                       (10) 

 

           )()(),()(),(),( kkkmkkmkm vR
H

eSF
  gy                                 (11) 

 
Our aim is to maximize (15): 
 

))();((maxarg)( kkfkML θyθ
θ

                                                  (12) 

2.2.  EM Algorithm 
In order to use the EM algorithm, hidden variables must be defined. We define ),( kmSF , ),( kmr and 

),( kmv  as hidden data. In step E, auxiliary functions, such as the joint log-likelihood expectations for 
the observed and hidden variables, need to be derived. In step M, the auxiliary functions are 
maximized according to the relationship between the parameters. This process converges to the local 
optimum of the likelihood function. In the following description, in order to make the formula look 
simpler, the frequency subscript k is ignored. 

Define the hidden data as: 
 

TTT
F mmmSm )](    )(    )([)( vrd 


                                             (13) 

 

The expression (5) can be written as: )()( mm Hdy  , ]      [ NNNNe 



 IIgH . In order to achieve 

the E step, several estimates are added: 



( )

( )

ˆ1)  ( ) { ( ) ( ); }

ˆ2)  ( ) ( ) ( ) { ( ) ( ) ( ); }

l

lH H
d

m E m m

m m m E m m m












d d y

Ψ d d d d y θ

 

Then, we can deduce: 
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
{2: 1}( ) ( )Nm mr d ,  

{1}( ) ( )FS m m d ,  
{ 2:2 1}( ) ( )N Nm m v d , 

,{2: 1,2: 1}( ) ( ) ( )H
d N Nm m m  r r ,

 
,{ 2:2 1, 2:2 1}( ) ( ) d N N N Nm m     Hv v , 2

,{1,1}( ) ( )dFS m m  , *
,{2: 1,1}( ) ( ) ( )d NFS m m m r  

Since y (m) and d (m) are Gaussian vectors, d (m) can be estimated by MCWF: 
 

)())(())(()})()({()}()({)( 1)()()(1 mmmmmEmmEm l
y

Hll
d

HH yHyyydd               (14) 

 
With: 
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Hll

d
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In step M, the auxiliary functions );( )(l

MAPQ θθ are maximized by linking the problem parameters. 
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3.  Results 
The clean speech library used in this paper is TIMIT, the speech sampling frequency is 16KHz. The 
reverberation data comes from the open source RIRs database. The microphone array is uneven 4 
linear arrays, the distance between the microphones [0.03, 0, 08, 0, 03] m and the sound source is 
placed 2m in front of the linear array. The speech quality is evaluated by computing the PESQ and 
LSD. The result is displayed in Table.1.  
 

Table 1. PESQ and LSD for a reverberation time of 0.36s and 0.61s. 

  SNR 10dB 15dB 20dB 25dB 30dB 

0.36s 

PESQ 
Unprocessed 1.47 1.71 2.01 2.19 2.38 
OriginalEM 2.10 2.49 2.80 3.01 3.19 
ProposedEM 2.20 2.56 2.85 3.10 3.25 

LSD 
Unprocessed 16.31 12.80 8.30 5.30 3.28 
OriginalEM 6.73 4.38 2.98 2.35 2.10 
ProposedEM 6.45 4.10 2.81 2.10 1.90 

0.61s 

PESQ 
Unprocessed 1.49 1.68 1.84 1.95 2.00 
OriginalEM 1.91 2.12 2.23 2.32 2.38 
ProposedEM 1.94 2.15 2.29 2.38 2.45 

LSD 
Unprocessed 16.11 12.25 8.90 6.06 4.53 
OriginalEM 7.01 4.85 3.54 3.10 2.93 
ProposedEM 6.90 4.65 3.40 2.90 2.75 
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4.  Conclusion 
In this paper, an advanced EM algorithm was presented to obtain an estimate of a spatially diltered 
version of the early speech component with suppressing early reflections, late reverberation and 
ambient noise. We modeled the early speech component as the product of anechoic speech and ETFs. 
Besides, the late reverberation was assumed to have time-varying PSD and time-invariant spatial 
characteristics. The hidden data was defined to be the anechoic speech, late reverberation signals and 
noise vectors. The algorithm was tested in simulation with a reverberation time of 0.36s and 0.61s for 
several SNR levels. The proposed algorithm performs better than the original method in PESQ and 
LSD. 
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