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Abstract. Reducing the concentration of carbon dioxide (CO2) in the atmosphere has 
momentous significance for alleviating global warming and protecting human health. 
Attractively, metal-organic frameworks (MOFs), as a novel class of porous materials, 
have held enormous potential in the field of CO2 adsorption in virtue of their unique 
features such as ultrahigh specific surface area, adjustable channels, and high-density 
active sites. Considering that the CO2 capture in practical applications is often 
performed at low pressure, it is more practical to design and develop MOFs with high 
low-pressure CO2 adsorption performance. In this contribution, the strategies for 
improving low-pressure CO2 adsorption performance of MOFs have been introduced 
and compared, and the relationship between the structure and adsorption capacity of 
MOFs as CO2 adsorbents has been analyzed.  

1.  Introduction 
Carbon dioxide (CO2), one of the primary greenhouse gases, has made enormous contribution to more 
and more severe global warming, posing a daunting threat to sustainable development of the world. 
Reducing the emission and lowering the concentration of atmospheric CO2 have been regarded as one 
of the most pressing environmental issues at present. In addition, the capture of CO2 in confined spaces 
and the adsorptive separation of CO2 from CH4 for natural gas upgrading are both of essential 
significance to the manufacture and living of our society. Consequently, it's exceedingly imperative to 
design and fabricate advanced materials with high performance for selective adsorption and separation 
of CO2. Metal-organic frameworks (MOFs), as a class of emerging crystalline porous materials, are self-
assembled by the bonding of inorganic metal ions with organic ligands and have aroused great concern 
and interest from researchers [1-4]. On account of their large specific surface area, high porosity, 
tailorable pore structures and highly dispersed active sites, MOFs have been widely applied in many 
fields [5-7]. Remarkably, selective adsorption and separation of gas mixture, especially CO2 from other 
gases, has been one of the most intriguing research areas in the applications of MOFs over past two 
decades, which could be demonstrated by the number of publications presented in Figure 1 [8-10]. 
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Since Yaghi and co-workers [11] first attested the viability of CO2 sorption in MOF-2 in 1998, 
tremendous efforts have been made to explore new MOFs for efficient adsorption of CO2. For instance, 
the research group synthesized MOF-177 in 2005 and found that the MOFs exhibited a CO2 adsorptive 
capacity of 1470 mg/g at room temperature and 35 bar, equivalent to 9 times its own volume when there 
was no other adsorbent [12]. Subsequently, they claimed that the CO2 uptake values in MOF-200 and 
MOF-210 were both 2400 mg/g at 298 K and 50 bar, far more than that of other MOFs ever reported, 
ascribed to their ultrahigh specific surface areas [13]. Similarly, Hupp’s group [14] obtained NU-100 
with a specific surface area of 6143 m2/g via De novo synthesis and the sorption experiments manifested 
that the material had a storage capacity of 2315 mg/g for CO2 at room temperature and 40 bars. 
 

 

Figure 1. Distribution of publications on MOFs and their application in gas adsorptive separation 
from 1998 to 2017. 

 
As is well known, the larger the specific surface area of MOFs, the stronger their ability to capture 

CO2. However, taking actual applications into account, the adsorption and separation of CO2 is generally 
conducted in a low-pressure multi-component gas system, thus the adsorption property of MOFs for 
CO2 may be markedly influenced when exposed to multi-component gaseous mixture under dynamic 
conditions. Hence, investigating CO2 adsorption performance of MOFs at low pressure is a much more 
meaningful topic.  

2.  Strategies to improve low-pressure adsorptive capability of CO2 in MOFs 

2.1.  Adjustment of pore structures 
In comparison with high pressure, the interaction between MOFs and CO2 at low pressure is relatively 
weaker, rendering low-pressure CO2 adsorption capacity of MOFs poorer. Studies have shown that the 
adsorption capability of CO2 on MOFs at low pressure is related to the adsorption heat [15, 16]. 
Fortunately, the introduction of new metal centers with smaller radius can decrease the pore size of 
MOFs to some extent, thereby increasing CO2 adsorption heat of MOFs. For example, Lau et al. [17] 
revealed that the CO2 uptake of UiO-66(Zr) increased by 81% with a 10 kJ/mol enhancement in isosteric 
adsorption heat via post-synthetic exchange with Ti(IV) ions over the wide range from low pressure to 
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ordinary pressure at 273 K. the contrastive experiments interestingly indicated that enhanced 
performance of CO2 uptake could be attributed to smaller pore size in Ti-exchanged UiO-66 (Figure 2). 
Alternatively, the fabrication of interpenetrating structures can be an effective option for MOFs to boost 
their adsorption capability of CO2 at low pressure. For instance, Kim and coworkers [18] synthesized 
catenated CuTATB-60 and non-catenated CuTATB-30 by a controllable sonochemical method. The 
experimental results showed that the adsorption value of the as-obtained CuTATB-60 for CO2 could 
reach 189 mg/g, which was higher than that of CuTATB-30 (156 mg/g). Besides, CuTATB-60 also 
exerted an exceptional selectivity of CO2 over N2 (>20:1) at normal temperature and pressure, testifying 
that the catenated structures in CuTATB-60 played a key role in CO2 adsorption. 
 

  

(a)

    

(b)

 

Figure 2. Structures of (a) UiO-66 and (b) Ti-exchanged UiO-66. 

2.2.  Introduction of coordinatively unsaturated metal sites into MOFs 
In principle, coordinatively unsaturated metal sites in the structure of MOFs bring about strong 
interaction between MOFs and CO2, endowing MOFs with outstanding CO2 adsorption performance at 
low pressure. Previous work [19, 20] have manifested that metal sites with unsaturated coordination 
mode in MOFs could be obtained by removing coordinated certain molecules like solvent and ligands 
with poor coordination ability. Yaghi et al. [21] reported that Mg-MOF-74 with coordinatively 
unsaturated magnesium ions, as shown in Figure 3, could adsorb 8.9 wt. % CO2, equal to 0.44 mol of 
CO2 molecules per metal ion, while its structural analog Zn-MOF-74 adsorbed merely 0.35 wt. % of 
CO2, which implied different metal ions played different roles in determining CO2 adsorption 
performance of MOFs. Furthermore, they attributed the exceptional capacity of Mg-MOF-74 to the 
interaction between CO2 molecules and the open metal ions in the structure of Mg-MOF-74. 
Analogously, Wang and co-workers [22] fabricated a novel Co(II)-based MOF, {[Co2(tzpa)(OH) 
(H2O)2] ꞏDMF} n, employing tetrazolyl-carboxyl as bifunctional ligand folloewd by the removal of 
coordinated water molecules. The gas sorption experiments suggested that the Co(II)-based MOF 
displayed an excellent CO2/CH4 selectivity of 31.8 for the mixtures containing 50% CO2 at room 
temperature and atmosphere pressure. X-ray crystallographic measurements suggested that multiple 
coordinatively unsaturated metal centers in the as-prepared MOF created by removing coordinated water 
molecules acted as active Lewis acid sites, resulting in eminent adsorption property and prominent 
selectivity for CO2.  

As a matter of fact, the presence of moisture is inevitable in the mixture of CO2 and other gases, 
which poses a major obstacle to the CO2 adsorption performance of MOFs. For this reason, it is of 
practical significance to develop moisture-resistant MOFs as high-efficiency CO2 adsorbents. For 
example, UTSA-16 was synthesized by Masala et al. [23] and activated under high vacuum. The 
experimental statistics illustrated that the CO2 working capacity (0.94 ± 0.04 mol /kg) of UTSA-16 in 
humid conditions was only slightly lower than that of dry conditions (1.30 ± 0.02 mol/kg), which 
demonstrated that high-density coordinatively unsaturated metal centers were more likely to interact 
with CO2 than water, making the as-obtained MOF a promising candidate for efficient CO2 capture even 
under wet operating conditions. 
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Figure 3. Formation of Mg-MOF-74 with open magnesium sites via a solvent exchange route. 

2.3.  Functionalization of MOFs with Lewis base 
As is noted, when Lewis base such as nitrogenous groups of amines is introduced into the structure of 
MOFs, the interaction between the local dipole of the nitrogenous groups and the quadrupole moment 
of CO2 molecule will induce the dispersion force and electrostatic force between MOFs and CO2, 
consequently enhancing the CO2 adsorption capability of MOFs [24-26]. For example, Milner et al. [27] 
successfully prepared 2,2-dimethyl-1,3-diaminopropane-grafted Mg2(dobpdc) (Figure 4) by means of 
post modification. The experimental data suggested that the diamine-functionalized MOF could uptake 
90% CO2 from coal flue gas at 313 K at about 15 mbar and the adsorption between CO2 and amine 
functionalized MOF was responsible for the exceptionally high CO2 uptake from dilute streams. 
 

dmpn

Functionalization

Mg2(dobpdc) dmpn-Mg2(dobpdc)  

Figure 4. Functionalization of Mg(dobpdc) with 2,2-dimethyl-1,3-diaminopropane (dmpn). 

3.  Conclusion 
With the urgent demand for energy-saving separation techniques, the exploration of new adsorbents for 
CO2 is therefore gaining big momentum, of which MOFs have shown great potentialities and wide 
prospects owing to their unique properties. Studying the adsorptive separation performance of MOFs 
for CO2 under actual production and living conditions, in particular at low pressure, is of vital 
significance for promoting MOFs from the laboratory scale to the practical use. Several useful strategies 
on how to effectively improve the low-pressure CO2 adsorption performance of MOFs have been 
developed, including the adjustment of pore structures, the introduction of coordinatively unsaturated 
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metal sites into MOFs and the functionalization of MOFs with Lewis base. Although some progress has 
been made in the field of low-pressure adsorptive separation of CO2 in MOFs, intense efforts still need 
to be made to further improve its performance and promote its industrial application. Moreover, the 
development of reliable approaches to achieve MOFs with high stability and reproducibility for CO2 
adsorption remains an arduous mission. 
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