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Abstract. A circle arc numerical wave tank for wave generation in a geotechnical 
centrifuge is presented in this paper. Compared with traditional straight wave tank, the 
use of the circle arc numerical wave tank can minimize the error due to the radial 
gravity field which produced by the centrifugal acceleration. A variety of cases 
generated by flap-type wavemakers in intermediate and deep waters are simulated in 
the circle arc numerical wave tanks and the accuracy of the numerical results are 
verified by a comparison with the numerical results in traditional straight wave tanks 
and the results of wavemaker theory. The results show that the wavemaker theory 
produced by Ursell can be used both in traditional straight numerical wave tanks but 
also in circle arc numerical wave tanks. The slight discrepancy of the results between 
the circle arc wave tanks and the traditional straight wave tanks can be attributed to 
the nonlinear effect caused by the circle arc. However, the discrepancy is insignificant 
which can be neglected for a circle arc wave tank with a relative long radius. 

1.  Introduction 
With the rapid development of marine science and technology, the ocean engineering services in more 
severe environment and the design precision of ocean engineering improves constantly; the 
complexity of the involved problems improves constantly. The limitations and restrictions of the 
conventional physical experiments are increasingly prominent. The ocean engineering tends to be 
massive and the prototype observation or full-scale experiments tends to be rather costly. Therefore, 
small scale models are used in most of conventional physical experiments. However, the stresses and 
self-weight in prototype cannot be simulated properly by small scale models and the stress-stain 
behaviour of most models are to be non-linear. Therefore, the behaviour of a scaled-down model may 
not represent the behaviour to its prototype. And with the centrifuge, self-weight stresses and gravity-
depended processes can be related to the full-scale prototype situation using well established scaling 
laws [1]. Hence, centrifuge experiments are frequently used in the laboratory to study the actual 
prototype’s behaviour. The generation and propagation of gravity surface waves in a drum centrifuge, 
with application to seabed mechanics, are discussed by Sekiguchi and Phillips [2]. After that, the 
generation and propagation of waves in geo-centrifuge are discussed, with application to wave-
induced liquefaction of sand beds [3-5]. And then several researchers developed centrifuge 
experiments to the study of submarine slide [6-9]. 
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At the present centrifuge experiments are only used for the geotechnical engineering, however, the 
water wave problems as the basic of marine engineering can not be reproduced properly in centrifuge 
yet. And but few people study on the water wave problems in Ng force field. The rely on the wave 
tanks is likely the primary cause, such as wave generation [10-14], wave reflection [15] and the 
interaction between waves and slopes [16]. And wave tanks are too huge for centrifuge equipment at 
the present such as the wave tanks created by Sekiguchi [3] and Sassa [4-5] which the wave tank 
length is only one wave length and can not meet the requirements of most of the marine engineering 
experiments. Therefore, the creating of wave tanks properly in a centrifuge is the primary problem. 
And the length of the wave tank in a centrifuge should be much longer than most of current centrifuge 
modeling. 

At the present the geotechnical centrifuge basket always is a cuboid with a similar width, length 
and height which has a rectangle cross section in radial gravity field. However, wave tanks always 
have a much longer length and a shorter width and height. Therefore a circle arc cross section should 
be used in radial gravity field for minimise the errors in centrifuge modeling (the details about the 
reason is described in section 2). And in this paper, wave generation in a circle arc numerical wave 
tank is presented. To verify the effectiveness of wave generation in the circle arc numerical wave tank, 
the results are compared with the results generated in the straight numerical wave tanks. A dynamic 
mesh technology is used to simulate the wavemaker’s flapper which simulation the real physics of 
wave generation phenomenon. And the unsteady, two dimensional Reynolds Averaging Navier-Stokes 
equations are solved in conjunction with the RNG k-ε model for treating the turbulence and the 
volume-of-fluid (VOF) method [17] for treating the free surface. 

2.  General theory 
Despite the fact that the centrifuge is a very powerful tool for reproducing the behavior of a prototype 
in a small-scale model, there also are some restrictions and limitations, too. In order to minimize the 
errors caused by these reasons it is essential to identify and quantify these limitations. A centrifuge is 
able to provide the N times gravity field. In this paper, the beam centrifuge is considered. A schematic 
of the beam centrifuge is shown in Fig. 1. When a centrifuge is rotating with an angular velocity of ωc, 
the centrifugal acceleration at any radius r can be given by rωc

2. Therefore, Ng=rωc
2 is defined where 

N always is defined as model scale in a centrifuge model testing in order to match this centrifuge 
acceleration to be the same as the prototype. From the function, Ng=rωc

2, it can be understood that the 
gravity field produced by a centrifuge is a radial field. However, the gravity field which provided by 
the earth is assumed to be vertically downwards or parallel in the context of geotechnical structures. 

 

Fig. 1 A schematic of the beam centrifuge. The drawing is not to scale. 
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Fig. 2 shows the error of the radial gravity field. It can be seen that in the center of the model, for 
traditional rectangular cross section models, the direction of the acceleration is in the vertical direction, 
while towards the side of the model the acceleration becomes more inclined. And it can also be seen 
that the error due to the radial gravity field becomes serious in a longer length model (as shown in Fig. 
2 (a)). Therefore, the effect may cause a significant error if testing activity is in the region close to the 
sides of the model or when the model is much longer which can not be avoided in a wave tank model. 
However, this problem becomes insignificant in a circle arc model, no matter for a shorter model or 
for a longer model, as the model is along the circle arc where the direction of the acceleration is 
always vertical relative to the model (as shown in Fig. 2 (b)). 

At the present study, wave generation in a circle arc numerical wave tank is presented for 
minimizing the errors caused by the radial gravity field. For minimizing the other errors in a centrifuge 
modeling, such as variations of stress and gravity field with model depth and the Coriolis effects 
which be not considered in this study, there are various literatures have been presented [1, 9, 18-19]. 

 

Fig. 2 Error due to radial gravity field 

3.  Governing equations and boundary conditions 
The schematic of the wavemaker mechanisms considered in this study is given in Fig. 3. The domain 
of the computation are annulus (θ × D) for circle arc wave tanks and rectangle (L × D) for straight 
wave tanks with one damping zone at the right end of the tank as shown in the figure. The wavemaker 
is positioned at the left end of the tank and forced to move according to a prescribed harmonic motion. 
The flap type wavemakers are considered in this paper which used by other researches such as 
Ducrozet et al. [20], Anbarsooz et al. [21] and Gyongy et al. [22], not only in numerical wave tanks, 
but also in physical wave tanks. 
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a 

 
b 

Fig. 3 Computational domain and boundary conditions for: (a) circle arc numerical wave tank; and (b) 
straight numerical wave tank. The drawing is not to scale. 

3.1.  Governing equations 
The governing equations for fluid flow are the Reynolds Averaging Navier-Stokes equations in 2 
dimensional, Newtonian and incompressible: 
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where u and u' are the fluctuating and mean velocity components, ρ is the density, P is the pressure, 

μ is the dynamic viscosity, fi represents body forces acting on the fluid and i ju u    is Reynolds 

stresses which must be solved in order to close the Reynolds Averaging Navier-Stokes equations. In 
this study, the RNG k-ε two equations model is considered for solving the Reynolds stresses and 
closing the Reynolds Averaging Navier-Stokes equations, which defined as: 
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Eq. 3 and 4 are the k and ε transport equations for the turbulence kinetic energy and turbulence 
dissipation rate respectively.  

The water free surface is treated using the VOF method by means of a scale filed (f) defined as: 
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The scale field propagating according to: 
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All equations mentioned above are presented in Cartesian Coordinates. For treating circle arc wave 
tanks the coordinate (x, y) is defined as: 
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3.2.  Initial and boundary conditions 
The initial condition considered in this study is still water. At the left, right and bottom boundaries of 
the computational domain, the no slip condition for the velocity components are imposed. At the top of 
the domain, the outlet boundary with atmospheric pressure is used. 

For the wave generation, the wavemaker’s paddle with a prescribed motion is modeled using the 
dynamic mesh technology. The position and orientation of the paddle are calculated each time step 
based on its prescribed motion and corresponding velocity distribution of the paddle is updated 
accordingly. In this study, the paddle has no translational velocity, but a simple harmonic angular 
velocity as: 
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where T is the period, Δθ is the angular span of the flapper motion, ω is the angular wave 
frequency defined by 2π/T. The stroke of the flapper (S) depends on both the angular span and the still 
water depth as: 

2 tan
2

S d
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 

                                                                   (9) 

In this study, the motion of the flapper is initiated using a linear time ramp according to Zhao et al. 
[23]. A duration time of 2T for the time ramp is enough to eliminate the initial instabilities. 

For the absorption of the wave energy, the damping zone must be modeled. Lin and Liu [24] 
introduced a friction source term in the momentum equation with an exponential damping law. Hafsia 
et al. [25] employed the same concept but simplified it. Anbarsooz et al. [21] introduced another 
method for treating the damping zone. The method is increased viscosity to a high level enough to 
effectively damp the energy of incident wave. In the present study, one passive absorption zones (see 
Fig. 3) are modeled in the simulation, at the left end of the computational domain. The method for 
treating these regions is increased a friction source term in the momentum equation with a linear 
damping law. 

3.3.  Numerical method 
In this study, the Finite Volume Method (FVM) is used for solving the governing equations in 
conjunction with the Semi-Implicit Method of Pressure-Linked Equations (SIMPLE) algorithm for 
solving the problem of Pressure-Velocity Coupling. The second-order upwind scheme is used for the 
discretization of the momentum, turbulent kinetic energy and turbulent dissipation rate equations and 



6

1234567890 ‘’“”

2nd International Symposium on Resource Exploration and Environmental Science IOP Publishing

IOP Conf. Series: Earth and Environmental Science 170 (2018) 022021  doi :10.1088/1755-1315/170/2/022021

 
 
 
 
 
 

the pressure staggering option (PRESTO!) scheme is used for the discretization of the pressure 
equation. The VOF method is used to track the location of the interface which is solved according to 
the geometric reconstruction schemes. 

4.  Results and discussions 
Wave steepness (H/l, H is the wave height and l is the wave length) is considered no greater than 0.025 
and the ratio of 2πd/l (d is the still water depth) is considered no less than 2.0 in order to avoid the 
strong nonlinear effect caused by wave steepness and the water depth. The experimental conditions 
corresponding to these cases are shown in Table 1.  

Table 1. Wavemaker conditions 

Number T (s) H (cm) S (cm) H/l 2πd/l 
1 0.9 2 1.39 0.0158 3.48 
2 0.9 2.5 1.74 0.0198 3.48 
3 0.9 3 2.08 0.0238 3.48 
4 1 2 1.52 0.0129 2.84 
5 1 2.5 1.90 0.0161 2.84 
6 1 3 2.29 0.0193 2.84 
7 1.1 2 1.69 0.0108 2.37 
8 1.1 2.5 2.12 0.0135 2.37 
9 1.1 3 2.54 0.0162 2.37 

 
In this study, Fig. 3 is considered as: L=10m, θ=1rad, D=1m, d=0.7m and Ld=2m. The center of the 

rotation is positioned at x=0 and y=0, the radius of the circle arc wave tank R is 9.7m (as shown in the 
Fig.2), the radius form the center of rotation to the water free surface is 10m and the length of wave 
tank which on the water free surface L is 10m. The mesh height considered in this study had 20 cells 
in the two times wave height around the water free surface and for the other regions the mesh height is 
bigger than that. The mesh length considered in this study is no greater than 3 times of the wave height 
which in the reinforced regions except the damping zone in which the wave length is greater than that. 
And the size of the mesh is found to be sufficiently small. A time step of T/1000 is found to be 
sufficiently small such that the results are independent of time step. And duration of 2T for the time 
ramp is found to be sufficiently big. What follows are the details and the results of the experiments. 

4.1.  wave generation in circle arc wave tanks 
In this section the numerical results in the case of wave generation in a circle arc wave tank are 
compared with analytics in order to verify the accuracy of the results. And for this purpose, the 
wavemaker theory of Ursell et al. [10] and the 1st order Stokes' progressive waves (also the Airy waves) 
are considered. 

All nine cases are studied in this section, which can be divided into three categories based on the 
wave periods. In these cases, to obtain the values of the wave profile from numerical calculations, a 
section away form the wavemaker and the damping zone at the end of the wave tank is considered. 
This section is selected between two positions distanced 1m away form the wavemaker location and 
8m which in front of the damping zone in order to obtain the wave height distribution of the wave 
filed in the wave tank. The numerical free surface profile at the dimensionless time of t/T=25 for cases 
with maximum wave steepness in every category (the cases #3, #6 and #9 of table 1) are shown in Fig. 
4. It is seen that the wave profile reaches a steady state in the wave tanks. And the numerical and 
analytical results are also compared with each other at the dimensionless time of t/T=25 in Fig. 4. As 
observed in the figure, the numerical results from the present model agree well with the analytical 
results. 
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Fig. 4 Numerical free surface profile at t/T=25 for: (a) No. 3; (b) No.6; and (c) No. 9 and comparison 
between the numerical and analytical wave profile t/T=25 for: (d) No. 3; (e) No.6; and (f) No. 9 

4.2.  wave generation in straight wave tanks 
In this section the numerical results in the case of wave generation in a straight wave tank are 
presented. In the case of straight wave tanks, the numerical results are compared with analytical results 
as presented in Ursell et al. [10] and the 1st order Stokes’ progressive waves in order to verify the 
accuracy of the results. 

All nine cases are studied in this section, which can be divided into three categories based on the 
wave periods. In these cases, to obtain the values of the wave profile from numerical calculations, a 
section away form the wavemaker and the damping zone is selected, too. The numerical free surface 
profile at the dimensionless time of t/T=25 for cases with maximum wave steepness in every category 
(the cases #3, #6 and #9 of table 1) are shown in Fig. 5. It is seen that the wave profile reaches a steady 
state in the wave tanks. And the numerical and analytical results are also compared with each other at 
the dimensionless time of t/T=25 in Fig. 5. As observed in the figure, the numerical results from the 
present model agree well with the analytical results, too. 

4.3.  comparison of wave profile in straight wave tanks and in circle arc wave tanks 
In this section the numerical results in the case of wave generation in a circle arc wave tank and in a 
straight wave tank are compared with each other. And also the wavemaker theory of Ursell et al. [10] 
and the 1st order stokes’ progressive waves are considered for compared with the results in order to 
verify the accuracy of the results. 
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Fig. 5 Numerical free surface profile at t/T=25 for: (a) No. 3; (b)No.6; and (c) No. 9 and comparison 
between the numerical and analytical wave profile t/T=25 for: (d) No. 3; (e) No.6; and (f) No. 9 
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Fig. 6 Comparison between the solution of wave maker theory and numerical results 

The numerical results from the present study for wave generation both in circle arc wave tanks and 
in straight wave tanks are compared with each other, as shown in Fig. 6. The results from the 
wavemaker theory are also displayed in the figure. The numerical wave height which presented in Fig. 
6 is calculated by averaging the wave heights at the fixed position with the distance equal to 2m, 4m 
and 6m away form the wavemaker initial position. The wavelength is calculated by averaging the 
wave lengths taken form the free surface space distribution inside the section which between two 
positions distanced 2m and 6m away from the wavemaker initial position. In this study, the cases 
include intermediate and deep water which can be divided into three categories based on the wave 
periods and also the wavelength because of the wavelength which can be calculated by water depth 
and wave periods and all cases have the same water depth in this study, as tabulated in Table 1. As 
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observed in the figure, the numerical results from the present model agree well with each other both in 
circle arc wave tanks and in straight wave tanks. And the numerical results agree well with analytical 
results, too. 

Figure 7 shows the time history of the numerical water free surface elevation (measured from the 
still water height) at 5m away from the wavemaker initial position in comparison with the analytical 
results. As observed in the figure, the numerical results from the present model agree well with each 
other and the analytical results. The slight discrepancy as displayed in figure 6 and figure 7 of the 
numerical results obtained from the circle arc numerical waves and the straight numerical waves can 
be attributed to the nonlinear effect caused by the circle arc. However, the discrepancy is insignificant 
which can be neglected for a circle arc wave tank with a radius of 10m. 
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Fig. 7 Comparison between the numerical and analytical free surface elevation at x=5m for: (a) No. 3; 
(b) No.6 and (c) No. 9 

5.  Conclusion 
The circle arc numerical wave tank is presented in this paper that can be used in a geotechnical 
centrifuge for wave generation. And the use of the circle arc numerical wave tank can minimize the 
error due to the radial gravity field which produced by the centrifugal acceleration. A variety of cases 
generated by flap-type wavemakers in intermediate and deep waters are simulated in the circle arc 
wave tanks and the accuracy of the results are verified by a comparison with the results of wavemaker 
theory and the numerical results in straight wave tanks.  

The following conclusions of this study can be drawn:  
(1) The wavemaker theory produced by Ursell can be used not only in the traditional straight 

numerical wave tanks but also in a circle arc numerical wave tanks.  
(2) For both the traditional straight wave tanks and circle arc wave tanks, the numerical results 

agree well with each other and the theoretical results. The slight discrepancy of the numerical results 
between the circle arc wave tank and the traditional straight numerical wave tank may be attributed to 
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the nonlinear effect caused by the circle arc. And the nonlinear effect caused by the circle arc can be 
neglected in a circle arc wave tank with a radius equal to 10m.  
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