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Abstract. In hyperspectral imaging, spectral unmixing and classification of the pixels are
some of the major post-processing operations. The spectral unmixing operation is used to map
the pixels quantitatively. In general, it is noticed that the algorithm computes abundance
fractions of some endmembers computationally, but does not exist in such part of a real scene.
These endmembers may be available in other parts of the real scene. To address this issue, a
framework is proposed to do quantitative mapping of the data. First, divide the data into the
regions of equal pixels size. Subsequently, hybrid constrained PSO based approach is applied
for mapping pixels quantitatively. Combination of Spectral Angle Mapper (SAM) and PSO
based approach are used for quantitative mapping respectively. For mapping, fully
constrained supervised linear mixing model is considered to estimate the abundance fractions.
In this work, hybridization of SAM and PSO is done in order to perform the mapping of
pixels quantitatively. The proposed framework is tested over synthetic data and has been
performing well.

1. Introduction

Hyperspectral imaging is one of the popular and most widely used spectral imaging techniques. It has
been using in a number of applications which includes minerals identification and mapping [1],
biomedical applications [2], vegetation mapping [3], water resources management [4], and agricultural
applications [5] and so on. The aim of spectral unmixing is to decompose mixed pixels into a set of
constituent materials called “endmembers” and their corresponding proportions called “abundances”
[11]. In general, endmembers extraction and abundance mapping are the sub-parts of spectral unmixing
operation. Majorly, there are two types of spectral mixing models i.e., Linear Mixing Model (LMM) and
the Nonlinear Mixing Model (NMM). Omran et al. [12] proposed Particle Swarm Optimization (PSO)
based approach for endmembers selection to do unmix of multispectral satellite images. Similarly, other
authors have also been used PSO based approaches [13], [14], [15] for spectral unmixing operation.

In the real scene, it is generally observed that the one part of the scene contains some endmembers while
another part contains different endmembers. In general, optimization algorithms compute abundances of
the other endmembers, where such endmembers are not available. Along with, it is also observed that
the scene consist a combination of pure pixels and mixed pixels. Hence, in a scene under observation
pure pixel needs mapping at pixel level while mixed pixel needs at sub-pixel level mapping i.e.,
quantitatively. In order to address such issue, data is divided into sub-regions and estimated the
abundance fractions of each sub-region individually. Thereby, PSO based approach follows global
best of individuals region and along with keep track on their individual best. Further, Spectral Angle
Mapper (SAM) [6] is used in combination with Particle Swarm Optimization (PSO) [7] based
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approach output to do pixel and sub-pixel mapping (quantitatively) to increase the accuracy. In this
way, this hybrid approach is used to increase the efficiency of quantitative mapping. In this work,
SAM is used to compute the angle difference between the test pixel spectra and endmembers. If the
angle between the spectrums is less than some threshold, it indicates that the pixel spectrum is closed
to the reference spectrum.

The remainder of the paper is organized in the following manner: Section 2, 3 and 4 discussed
the spectral angle mapper, particle swarm optimization and linear mixing model as a common
ground. Section 4 presents the methodology for the proposed framework. Section 5 discussed the
experiment and analysis of the proposed approach over synthetic data. Section 6 ends with the
conclusion along with future scopes.

2. Spectral Angle Mapper (SAM)

Spectral Angle Mapper (SAM) [6] is based on the assumption that the single pixel represents a
single material and on matching assigns reference spectrum to such single pixel. This technique is
used to measure the spectral similarity between the reference spectra and test spectra by calculating
the angle in between them, treating them as vectors in a space with dimensionality equal to the
number of bands. Equation (1) represents the SAM expression for determining the spectral angle
difference:
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In Equation (1), n represents the number of bands, t and r indicate the test pixel spectrum and
reference spectrum, and o indicates the spectral angle between the test and reference spectra. Lesser
value of o represents the more similarity between the spectras.

3. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) [7] is proposed by Eberhart and Kennedy in 1995. PSO is
inspired by the food searching behavior of birds and fishes. It is an evolutionary computation
technique based on swarm intelligence. It is very simple as compared to other evolutionary
computation algorithms and requires few parameters for optimization purpose. PSO has stronger
global convergence and very popular in the multi-objective optimization problem, non-linear
programming, and many other areas. It may be applied to most of the optimization tasks and the
tasks which can be converted into the optimized ones. In our case, PSO based approach is applied to
estimate the abundance fractions following the constraints of LMM. Equation (2) represents the
velocity and position of a particle which is given below, respectively.

Vipr = Wivp + ¢ xrand() * (p; = si) + ¢ xrand() * (pg — s:)
)

Si+1 = Si T Vi1

In above equations, v;,, and s;, represent the velocity and position at i+1 step. w; denotes inertia
weight, c; and c, are the acceleration coefficients whose values lie in the range [0, 1], and rand() is
a uniform independent random variable. p; And pg represent personal and global best of the
particle.

4. Linear Mixing Model (LMM)
Pixel-wise classification detects the object class that most closely matches with the pixel spectrum.
However, it does not provide any information that might be present within the boundaries of the
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pixel. It may be possible that mixed pixels may be present at such place. A mixed pixel contains a
mixture of more than one material which occurs due to two reasons. First, due to the low spatial
resolution of the imaging sensor, so that adjacent endmembers jointly occupy a single pixel.
Consequently, resulting spectra will be the combination of individual spectrums. Second, when
mixed pixels appear when different materials are combined into a homogeneous mixture. Hence, in
such case, spectral unmixing [10] is one of the vital post-processing tasks of hyperspectral data. It is
a case of a blind separation problem. Mixing of the spectral signatures may be linear or non-linear in
nature. However, Linear Mixing Model (LMM) [8] is mathematically simple and easy to solve.
Here, fully constrained based LMM is utilized for optimization to estimate the abundance fractions.
It follows sum-to-one and non-negative constraints, respectively.

In LMM, a linear relationship exists in between the fractional abundance of the substances
comprising the area being imaged and the spectrum of the reflected radiation. An expression for the
LMM has been given below in Equation (3):

Y= a.81+ a;s, + -+ aysy +w
- 3
y=2ai5i+w ()
i=1

In above equation, s;represents ith endmember and a; indicates the abundance fraction of ith
endmember, M is the number of endmembers and w is the error term.

5. Methodology

Methodology for the proposed work has been shown in Figure 1. Initially, SAM is used to find the
spectral angle difference between the endmembers and test pixels’ spectrum. In parallel, data is
divided into equal regions and PSO based approach is applied to each region individually in order to
estimate the abundance fractions. In this methodology, conventional PSO based approach is not used
for estimation. A PSO based approach is used in which each pixel is considered as a particle and each
particle is our solution i.e., estimating the number of abundance fractions per pixel. Each pixel keeps
track over their personal best and follows global best of that region. Hence, a swarm is equal to the
number of the pixel in a region, and each swarm finds its own solution i.e., abundance fraction
estimation. Hence, this PSO based approach is computationally less complex as compared to the
conventional PSO. There is no swarm size per solution.

In general, it is observed that one endmember is presented in one part of the scene while other
endmembers are not presented in that considered part of the scene. However, optimization algorithm
does not know which endmember is available or not in that part of the scene. In such a case,
estimated output of optimization algorithm which is computationally right but does not exist like a
real scene. Due to this, data is divided into sub-regions before finding abundance estimation. In such
a case, PSO based approach follows global and personal best of such region for estimation. If-else
conditions are applied, after finding spectral angle difference and estimated output. In this block, the
output of SAM and PSO based approach is used for quantitatively mapping in terms of pixels and
sub-pixels operation quantitatively. As shown in the pseudo code, a loop is applied for pixel basis. If
the minimum value of spectral angle difference is less than ‘0.001” by any endmember per pixel,
then, the value of ‘1’ is allotted for that endmember and others endmembers contribution for such
pixel will be zero. Else, abundance estimated value by PSO based approach will be allotted to such
pixel. In such a way, a quantitative mapping is achieved. Pseudo code for the if-else block of
methodology has been given below.
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Given:

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:

Dimensions: SAD( Number of abundance fractions, Number of pixels), and

end
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Figure 1. Methodology for the Proposed Framework

Pseudo Code : if-else Block of Methodology
Calculated Spectral Angle Difference (SAD) between endmembers and pixel spectrum of
data and Estimated abundance fractions output (K_ab) by PSO based approach.

K_ab( Number of abundance fractions, Number of pixels)
for j = 1=» Number of Pixels
[error, location] = min(SAD(: , j))
if error <= 0.001

Abundance ( location, j ) =1

Abundance (:,j)=K_ab(:,j)

6. Experiment and Analysis
Synthetic data is used for testing the proposed framework. It consists of 20 bands and 28 pixels. In this
framework, assuming endmembers for abundance estimation are available. Synthetically generated
endmembers have been used to do unmixing operation. For abundance estimation, supervised linear
mixing model is considered. Data is divided into four regions of 7 pixels. Each consists of 20 bands.
The objective function for the minimization is given below:

fi=> 0y~ Ea)y

9% Number of abundance fractions per pixel

(4)
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In above equation, y; is the jth mixed pixel, E represents the endmembers and a; indicates the
abundance fractions for the jth mixed pixel. Synthetically generated endmembers for abundance
estimation has been given in Figure 2. Herein, four endmembers are used which are labeled as E1, E2,
E3, and E4, respectively. Root Mean Square Error (RMSE) is used as a statistical measure to check the
performance of the proposed framework. An expression for the RMSE is given below in Equation (5):

N
1
RMSE = NZ(actualj — estimated;)? 5)
=1

In above equation, N is the number of pixels, and actual; and estimated; represent the abundance
fractions of a jth pixel. Hence, RMSE value is calculated for each endmember. Parameters for the PSO
based approach in order to estimate the abundance fractions are given in Table 1. Stopping criteria for
the PSO based approach is the number of iterations i.e., 1000. Value of C1 and C2 are taken as 1.1 and
1.05. Sugeno function [9] is considered for the inertia weight strategy and the expression is given
below in Equation (6):

1-5

1—-sp (6)

In above equation, 3 is (current iteration/maximum iterations) and s is constant larger than -1. For this
experiment, a value of s is taken as -1.5.

Table 1. Parameters consideration for the PSO based approach

Parameters Values
Number of Iterations (Stopping Criteria) 1000
Inertia Weight Strategy Sugeno function
C, (Social Component) 1.1
C, (Cognitive Component) 1.05
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Figure 2. Synthetic generated endmembers for abundance estimation

Distribution of synthetically generated abundance fractions is shown in Figure 3. In the given
figure, al, a2, a3 and a4 represent abundance fractions of endmembers El, E2, E3, and E4,
respectively. No noise is added to the mixture data. As shown in the figure, abundance fractions
distribution fractions follow sum-to-one and non-negative constraints, respectively. In some pixels,
some pixels are pure and others are mixed. A framework is proposed in order to do mapping of the
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spectral data quantitatively. Estimated abundance fractions labeled as E_al, E_a2, E_a3, and E_a4
using hybrid constrained PSO based approach by endmembers E1, E2, E3, and E4 are shown in Figure
4. The result indicates that the proposed approach has been performing well. On visualization Figure 3
and 4, estimated abundance framework has been performing well.

It is noticed that the RMSE value should lie in the range of [0, 1]. In our case, RMSE values
between the actual and estimated abundance fractions for each endmember are 0.0629, 0.0439, 0.0351
and 0.1465 which have been given in Table 1. Obtained RMSE values indicate that the proposed
framework has been performing well.
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Figure 3. Distribution of synthetically generated abundance fractions
1.2
%)
§ 1
=
@ 0.8 -
St
P BE_a4
L 0.6 -
= wE_a3
< 4
e 0.4 mE a2
= _
202 BE al
<
0 -
123456 7 8 9510111213141516171819202122232425262728
Number of Pixels

Figure 4. Distribution of estimated abundance fractions using proposed framework

Table 2. RMSE values between actual and estimated abundance fractions for each endmember

Abundance Fractions RMSE
Abundance Fraction for Endmember 1 | 0.0629
Abundance Fraction for Endmember 2 | 0.0439
Abundance Fraction for Endmember 3 | 0.0351
Abundance Fraction for Endmember 4 | 0.1465
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7. Conclusion

In this paper, a novel framework is proposed to do quantitative mapping using hybrid constrained
PSO based approach. In this work, hybridization of SAM and PSO is done in order to perform the
task. The aim of the paper is to present a framework for quantitatively mapping. It is tested over
synthetic data and performing well. The suitability of this framework may be tested over real data set
and noisy data. Furthermore, the potential of a framework for abundance estimation may be tested
over non-linear mixing model.
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