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 Abstract. Landslides post great threats to many regions globally, particularly in densely 

vegetated areas where they are hard to identify.  Thus, in order to address this issue, precise 

inventory mapping methods are required in order to gauge landslide susceptibility in regions, 

as well as hazards and risk. Obstacles in the development of such mapping methods, however, 

are optimization techniques to employ, feature selection methods, as well as the development 

of model transferability. The present study seeks to utilize correlation-based feature selection 

and object-based approach in conjunction with LiDAR data, whereby LiDAR-DEM derived 

digital elevation alongside high-resolution orthophotos are employed in tandem. Next, fuzzy-

based segmentation parameter optimizer was employed in order to optimize segmentation 

parameters. Next, support vector machine was employed in order to assess the effectiveness of 

the proposed method, with results illustrating the algorithm’s robustness with regards to 

landslide identification. The results of transferability also demonstrated the ease of use for the 

method, as well as its accuracy and capability to identify landslides as either shallow or deep-

seated. To summarize, the study proposes that the developed methods are greatly effective in 

landslide detection, especially in tropical regions such as in Malaysia. 

1. Introduction 

Many applications require the usage of landslide inventory maps, such as regional magnitude 

recording, initial-step landslide susceptibility, hazard and risk analysis [1], and pattern examination for 

landslide distribution regarding landscape change due to landslide occurrence [2]. However, the 

formulation of landslide inventory maps for certain landscapes such as tropics, which are covered by 

heavy vegetation present, are not so straightforward and pose complications. Even utilizing the most 

advanced methods of landslide detection, the covering effect for vegetative regions poses 

complexities, calling for a more rapid yet precise method. Studies have shown that tectonic-

geomorphic mapping in greatly vegetative areas compromises visibility for the landscape within[3]. 

One of the advanced methods for landslide detection in this area is remote sensing data, one of which 

includes LiDAR data [4]. LiDAR data in current times has come up as an effective method due to 

features such as dense vegetative area penetration and terrain information provided with high point 

density. Many studies have also illustrated the capability of this method to map landslides in densely 

vegetative areas[5], [6], and [7].Landslides may be categorized according to movement characteristics 

and volume, as either one of two types: shallow landslides or deep-seated landslides [8]. The 

difference between the two landslide categories is in the size, volume and impact of damage caused 

[9]. Studies have validated usage of LiDAR data for landslide identification [10], [11]. It has been 

shown that the method is able to provide essential information regarding active landslide geological 

features and topography. Thus, the discrepancies among landslide types must be duly noted in order to 

appropriately investigate geomorphological changes as well as landslide hazard mitigation [12]. 

Remote sensing and geoscience applications frequently utilize image analysis techniques in 

order to investigate landslides. Gao and Mas (2008) have reported the employment of pixel-based and 
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object-based image analysis techniques for various landslide studies. Object-based image analysis, 

abbreviated as OBIA, has been more popularly utilized for varying scales than the former method 

(pixel-based). Thus, this method could effectively form the semantic features and additional geometry 

for classification applications [13]. Object-based methods utilizing LiDAR data have been applied in 

very densely vegetated areas, as an appropriate alternative to pixel-based method due to the uneven 

terrain present in these landforms [14]. On the other hand, pixel-based methods [15] face the limitation 

of salt-and-pepper effect which hinders the landslide identification process due to poor visibility [16]. 

Selection of features is vital for data mining in such applications [17]. Heightened dimensional 

datasets in classification-type problems lead to complexities in testing and training. A few object-

based landslide studies have employed feature selection employing LiDAR data [18], [19]. One study 

[17] investigated the importance of feature selection by employing correlation-based feature selection 

(CFS) in conjunction with gain ratio algorithms. Another study [20] employed random forest (RF) for 

the feature selection process. Currently, Ant Colony Optimization (ACO) has also been employed for 

this purpose, ultimately providing effective results [21].  Thus, the aforementioned literature survey 

illustrates that feature selection methods have been commonly used in conjunction with object-based 

methods. Nevertheless, there is a lack of literature for utilization for CFS and OBIA for remote 

sensing data using LiDAR data. The present study seeks to integrate CFS with OBIA for landslide 

identification, between shallow and deep-seated landslide types. Furthermore, airborne laser scanning 

data is employed for the study. The following objectives were established for the study: i) to optimize 

the multiresolution segmentation parameters, ii) to apply the CFS for feature selection from high-

resolution airborne laser scanning data, and iii) to employ Support vector machine (SVM) for 

differentiation of landslide types. 

2. Methodology  

High-resolution DEM (0.5 m) was derived from LiDAR point clouds, which was in turn employed for 

generation of other LiDAR-derived products and various landslide conditioning factors: aspect, slope, 

height (nDSM), intensity and hillshade. Subsequently, these products as well as orthophotos were 

integrated with correction of geometric distortions. Thus, they were brought together within the same 

coordinate system and prepared for extraction of features using Geographic Information System (GIS). 

Afterwards, Fuzzy-based Segmentation Parameter optimizer [22] (abbreviated FbSP optimizer) was 

employed to retrieve scale, shape and compactness parameters. The appropriate features were chosen 

utilizing CFS for feature ranking, starting from most to least significant features. SVM was then 

employed for performance evaluation of the proposed methodology. Lastly, transferability model was 

employed within the test site, with results being validated with confusion matrix. Figure (1) illustrates 

the study flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study flowchart 

 

2.1. Study Area  

The chosen area of study is Cameron Highlands, which is a tropical and densely vegetated 

region spanning 26.7 km2 of land area (see Figure 2). The reason for choosing this particular 
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area is because of its susceptibility to landslides. Geographically, Cameron Highlands is 

located in the north part of West Malaysia. The geographical coordinates for this region is 4° 

26' 3” to 4° 26' 18" latitudes; and 101° 23' 48 to 101° 24' 4" longitudes. 

 

 
Figure 2. Study shown to comprise: (A) Analysis area; (B) Test site 

2.2. Data Used 

On the 15
th
 of January, 2015, LiDAR point cloud data was retrieved from a region spanning upwards 

of 26.7 km2 of the Ringlet and surrounding area of the Cameron Highlands; the flying height was 

maintained at 1510m. Point density for point-clouds was closed 8 points per square meter, with pulse 

rate frequency being 25,000 Hz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. LiDAR derived data (A) orthophotos (B) DTM (C) DSM (D) Intensity (E) Height (F) Slope 

(G) Aspect 
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It was ensured that precise LiDAR data readings were maintained within root-mean-square 

errors of 0.15m in the vertical axis and 0.3 m in horizontal axis. Furthermore, orthophotos were 

retrieved for the same aforementioned LiDAR point data system. Non-ground points were deleted 

utilizing inverse distance weighting (GDM2000/ Peninsula RSO as spatial reference), followed by a 

DEM of 0.5 m spatial resolution obtained through interpolation of LiDAR point clouds. Next, the 

LiDAR-based DEM was employed to produce derived layers to effectively identify landslide locations 

and features [23]. One of the most crucial elements for land stability is slope, which dictates the effect 

of landslide phenomenology [24]. Slope is also the main element behind landslide occurrence [25]. 

With regards to mapping of landslides, another point to note is that geometric features along with 

texture features are very pertinent for enhancing classification precision [19]. Terrain morphology, 

sampling density and interpolation algorithm employed are all influencing factors for DEM accuracy 

[26]. Figure (3) illustrates the data used for present study. 

2.3. Image Segmentation 

Factors influencing the selection of segmentation parameters include the environment chosen for 

analysis, chosen application and input data [27].Scale, shape and compactness are three such 

parameters which are needed to be selected for this algorithm by employing conventional trial-and-

error techniques. However, such techniques are not time-effective and quite laborious [1]. Previously, 

numerous studies on automatic as well as semiautomatic methods required to identify best parameters 

were studied [28], and [29].Two of the cutting-edge techniques for automatic segmentation parameter 

selection are as follows: Taguchi optimization techniques [1] and fuzzy logic supervised approach 

[22]. 

2.4. Support Vector Machine (SVM) 

Support Vector Machines (abbreviated SVM), are a supervised learning classifier commonly utilizes 

in remote sensing studies [31], [32]. This technique performs nonlinear transformation for covariates 

within high-dimensional feature spaces. It was investigated that SVM in small training datasets tended 

to be more precise than maximum likelihood classification, decision tree classification and even 

artificial neural network classification using greater training datasets [25]. Another study showed that 

a mere quarter of training dataset was enough for greater accuracy classifications [30]. Furthermore, 

SVM has been show to be very precise in the presence of limited training data sets [11]. SVM is 

employed in the current study utilizingthe e1071 package [33]. This was conducted within the R 

statistical computing software RDevelopmentCORE TEAM [34]. The performance of a SVM 

classifier depends on its hyperparameters. Therefore, selection of these parameters was optimized and 

their sensitivity was analyzed by using a grid search with 5-fold cross validation method. 

2.5.  Feature Selection  

The various techniques for selecting features are filter, wrapper and embedded methods [35]. Filters 

need less time for computing, particularly within larger datasets [35]. The method is also suboptimal 

and not related to the classification algorithm. The wrapper method is not time-effective and 

omplicated due to the features being gauged with regards to classifier algorithms employed [36]. The 

features for this method are gauged by way of classification techniques themselves. Therefore, chosen 

features heavily depend on the classifer employed. In contrast to wrapper method, embedded methods 

need less time for computing and also addresses the issue of overfitting [37].  When this method 

combats greater amount of features, overfiting occurs due to irrelevant input features [19]. However, 

choosing lesser feature sets are effective in producing optimal classification resuls [38].  

2.6. Optimizing the boundary of the types of landslide  

The FbSP optimizer, mentioned prior, was employed to find optimal parameters for multiresolution 

segmentation, in particular the scale, shape and compactness. Optimized parameters are able to 

quickly raise precision of classification methods by way of specifying segmentation boundaries 

according to landslide type. Utilization of optimized segmentation parameters enables the exploitation 

of spatial and textural aspects for feature selection. The present study proposes an accurate 
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segmentation in order to conduct the following steps, which entail that the optimal values of 

segmentation parameters be selected using sufficient training samples. These training samples would 

comprise both landslide and non-landslide types. Table 1 illustrates chosen values for scale, shape and 

compactness, followed by Figure 4 depicting the segmentation process.  

 

                                        Table 1.Multi- resolution segmentation parameters 
Initial parameters Iteration (Optimal parameters) 

No. Scale  Shape  Compactness      Scale  Shape  Compactness  

1 50 0.1 0.1 75.52 0.4 0.5 

2 80 0.1 0.1 100 0.45 0.74 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.Shows the segmentation process using FbSP optimizer 

2.7. Effects of SVM Parameters 

Effectiveness of SVM classifiers greatly relies on hyperparameters. Consequently, in order to select 

the best parameters, the sensitivity is required to be inspected. Three SVM parameters should be 

evaluated, which include penalty parameter, kernel function and gamma parameter. These three 

parameters are shown in Table 2, alongside space search. The sub-optimal parameters in the present 

study needed grid search using 5-fold cross validation methods.  

 

Table 2. Optimized the parameters of support vector machine. 
Parameters Search Space Optimum 

 Kernel function  {Linear, RBF, polynomial} Radial basis function (RBF) 

Penalty parameter (C) {0,500} by 10 300 

Gamma (ɤ) {0.0001,10} by 0.01 0.901 

2.8. Selection relevant feature based on (CFS) Method 

The current study investigates algorithms for feature selection which aim to support the selection of 

best features to identify shallow and deep-seated landslides. CFS method is employed for this purpose 

in order to choose the best features. A total of 86 of features present in landslide differentiation 

process, mean and StdDev, were considered for DTM, slope, height, DSM, and intensity. As for 

orthophoto, the red, blue, green, Max. diff and brightness were considered. As for texture features, the 

Gray-level concurrence matrix (GLCM) correlation, as well as GLCM dissimilarity, GLCM angular 

second moment, GLCM Mean, GLCM stdDev, GLCM Entropy, GLCM Contrast, GLCM 

Homogeneity, GLDV angular second moment, Grey level difference vector (GLDV Mean, GLDV 

Entropy and GLDV Contrast were all considered. Next, the geometry features were considered, such 

as shape, length and weight, density and region. Highest accuracies were found for results after 9 

features were implemented, as shown in Table 3 showing great accuracies obtained. CFS results depict 

that the best subsets were obtained to enhance differentiation among two shallow and deep-seated 

landslides for the chosen study area.  

2.9. Differentiation between shallow and deep seated landslide in the analysis area   
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The SVM results have demonstrated inaccurate results, with accuracies being 69.51% for shallow 

landslides and 71.54% for deep-seated, shown in Table 4. The results followed the features’ utilization 

for training within the SVM classifier, whereby a misclassification was shown between the two 

landslide types. Furthermore, various landscape objects were also shown, which were artificial, cut-

slope among others. On the other hand, SVM classifier utilizing the best features exhibited much more 

accurate qualitative results, while also being able to effectively distinguish between the two landslide 

types. The obtained quantitative results were 86.36% for shallow landslides and 87.78% for deep-

seated landslides, as shown in Table 4.  

 

Table 3. The important features selection through CFS algorithm for detecting types of landslide (i.e. 

shallow and deep seated landslides)  

 
Algorithm Feature selection Rank 

CFS Mean Intensity 1 

GLCM Homogeneity 2 

Mean Slope 3 

Area 4 

Length/width 5 

GLCM StdDe 6 

Mean DTM 7 

GLCM Contrast 8 

StdDev Blue 9 

 

It is shown by the findings that greater accuracy is achieved when using CFS for feature 

selection. This may be so because of the discrepancy among values of shallow and deep-seated 

landslides. Thus, distinguishing between the two types was made much simpler. Furthermore, shallow 

landslide traits, such as size, run out and depth were found to be varying when compared to deep-

seated landslides. This helped in clearly classifying between two types as Figure 5 shows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Shallow landslide (Yellow 

polygon) and deep-seated landslide 

(Red polygon) obtained for Cameron 

Highland region 

 

The SVM results of classifier also demonstrated the capabilities of CFS algorithm and OBIA 

optimization techniques, in conjunction with LiDAR data, texture, geometric features and orthophotos 

which were all employed to improve the process of landslide detection. This entire process is 

illustrated in Figure 6.  

Figure 6. Result of SVM classifier showed the 

locations of shallow and deep seated landslide in 

the Analysis area 
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2.10. Evaluation of CFS based feature selection 

The present study shows transferability of developed model, as assessed in a secondary study of test 

site. Considerations were taken into account, while parameters for segmentation were optimized in the 

test site. Thus, full subsets for feature selection in the test site entailed that the lower quality of 

qualitative assessment be achieved. As a result, overall accuracy for shallow landslide was 64.43% 

and deep-seated landslides was 65.38%, shown in Table 4.Misclassification was noted between 

shallow and deep-seated landslides with regards to other landscapes, such as cut-slope, bare soil and 

artificial. On the other hand, this occurred only when the optimal features were selected. Overall 

results for accuracy of SVM classifier were 85.32% for shallow and 85.75% for deep-seated, shown in 

Table 4. However, the present study showed that optimal scales support the exploitation of feature 

selection, thus making the retrieval of transferability classifier less complex. SVM results further 

illustrated a drop in accuracy, which is still acceptable for the application. Lowered results accuracy 

show a decrease in results accuracy given many disadvantages which arise due to landslide types, 

which may be either shallow or deep-seated, as well as the mixture of landslide, shape, area, amount 

of time since landslide formation, complex terrain, and so on. The transferability results show that 

significance of features from high-resolution LiDAR data, textures, orthophoto, and geometric features 

for landslide classification, shown in Figure 7.  

 

 
Figure 7. Result of transferability model showed the locations of shallow and deep seated landslide in 

the Test site 

Table 4. Results comparison based on overall accuracy for important and full features using SVM 

classifier. 
Area Feature Class Overall  

Accuracy   %  

Kappa  

Accuracy % 

Analysis area  

Full Features 

 

 

Shallow  

69.51 0.68 

Test site 64.43 0.65 

Analysis area Important Feature 

of CFS 

86.36 0.77 

Test site 85.32 0.74 

Analysis area  

Full Features 

 

 

 

Deep seated 

71.54 0.66 

Test site 65.38 0.61 

Analysis area 
Important Feature 

of CFS 

87.78 0.8 

Test site 85.75 0.76 

 

Table 5 demonstrates user and producer results accuracies for SVM classifier given important and full 

features for the previously mentioned sites. Results further illustrate the accuracy for deep-seated 

landslides, with significant features showing greater accuracies for the previously mentioned areas. 
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Thus, it may be concluded that selection of most important features could result in the decrease of 

dimensionality for object features, while also enhancing the classification accuracy. These results are 

in line with the study by [39]. Thus, in summary, SVM algorithm was found to be more sensitive to 

feature selection process.  

 

Table 5. Results comparison based on user’s Accuracy and producer's Accuracy for important and full 

features using SVM classifier 
Area Features Class User's 

 Accuracy % 

Producer's 

Accuracy % 

Analysis area  

Full attributes 

 

 

 

Shallow 

73.56 75.64 

Test site 72.82 74.27 

Analysis area Important Features 

of CFS 

78.96 85.85 

Test site 77.31 80.54 

Analysis area  

Full attributes 

 

 

Deep seated 

76.57 78.17 

Test site 74.45 76.71 

Analysis area Important Features 

 of CFS 

81.63 81.63 

Test site 80.78 83.86 

2.11. Field investigation 

In order to validate the proposed method, a field investigation was undertaken. Subsequently, landslide 

types were determined by way of GeoExplorer 6000, a handheld GPS device shown in Figure 8. More 

relevant information regarding landslide extent, source area, volume and deposition were all retrieved 

from the field investigation. Field measurements also enabled assessment for precision and reliability 

of the landslide inventory mapped.  

 

 

 

 

 

 

 

 

 

Figure 8. Landslide locations taken in the study area (a) Laluan Simpang Pulai (b) Tanah Rata. 

3. Conclusion 

The present study focused on improving the precision of landslide mapping by optimizing parameters 

used in multiresolution segmentation. The chosen parameters were found to greatly improve landslide 

classification of the two types: shallow and deep-seated landslides. Choosing appropriate features has 

been shown to greatly optimize classification accuracy, thus also enhancing computational resources 

for a given task. Lastly, transferability model is also improved. The findings of this study demonstrate 

the importance of integrated models, whereby the following factors were employed to improve 

landslide classification: high-resolution LiDAR data, geometric features, texture features, parameter 

defitinoin for SVM classifier and orthophotos. Additionally, findings for transferability showed that 

combination of CFS and object-based approach led to effective results, which enhanced the efficiency 

and cost for landslide inventory mapping methods. In summary, the developed method may be 

employed to enhance landslide detection and classification, by producing robust inventory maps which 

ultimately may be used for disaster management applications.  
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