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Abstract. The paper presents the methodology for developing passability maps that may be used 

for planning the movement of unmanned ground vehicles (UGVs). They were based on a 

standardised spatial data base in the scale of 1:25 000, created and used by the military forces and 

a high resolution digital terrain model. Maps were generated for square shaped primary fields. 5 

sizes of such fields were used (side length 25, 50, 100, 200 and 500 m). Basing on the ground 

cover and terrain formation, for each primary field the index of passability (IOP) is calculated, 

being the terrain resistance coefficient. The obtained maps were compared to each other. As the 

presented methodology is completely automated, an analysis of the passability maps generation 

time depending on the size of the primary field was conducted. The obtained results demonstrated 

that maps that are most useful for planning UGV routes are those generated with use of the 

smallest primary fields (25 m), as they visualise the most terrain obstacles. The generated maps 

may be recorded in the UGV memory. As far as completely autonomous structures are concerned, 

this will enable the algorithms implemented in the vehicle, with the support of other sensors, to 

determine the optimal route of the UGV. 

1. Introduction 

The sense and utilization of unmanned vehicles is enormous. We can find a lot of various ways of 

their utilization, both in the civil and military area. Development of autonomous unmanned ground 

vehicles brings a key issue to be solved – determining the precise position of a vehicle in the area [1-3] 

and finding the optimal route to move.  

Another perspective of interest are the particular factors limiting the speed of the vehicle over the 

terrain elements. For off-road terrain, it is of particular interest which factor caused the vehicle to be 

unable to traverse a terrain unit, a condition known as “NO-GO”. There are several Cross-Country 

Movement (CCM) models, which are developed for the navigation of military vehicles – e.g. see [4-

7][21]. The outputs of these models can be in the form of a map or digital Global Positioning System 

(GPS) navigation implemented in an off-road vehicle. 

The NATO Reference Mobility Model (NRMM) [4] is the Army model and simulation standard 

for predicting vehicle mobility. The NRMM is a comprehensive computer model that predicts vehicle 

speed performance on roads, trails, and cross-country in all weather conditions, including terrain 

conditions associated with winter. The motion resistance is used in combination with other resisting 

forces (e.g., vegetation, slope) to determine the maximum possible force controlled by speed. Model 

outputs are velocities traveling up- and down-slope, average velocity, and a numerical code related to 

the speed-controlling algorithm. The CCM models calculate (accumulate) the proportion of the terrain 
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where speed-made-good is limited by selected factors – see e.g. [8-13] or complete factors: slope 

gradient, soil conditions, vegetation, hydrology, roads, scenario, weather, etc. – see [14-17]. 

The aim of this paper is to discuss the issues related to the development of passability maps for 

Unmanned Ground Vehicles (UGV). Due to the fact that such vehicles are very often used by the 

military forces, the maps were generated with use of a terrain objects database used and generated by 

the army. This database contains information about land cover and terrain formation, which, pursuant 

to military reference standards, directly influence the capability of the vehicle to move in the given 

terrain. It was the direct intention of the authors for the resulting map to be generated in a completely 

automated and direct way (without any unnecessary processing), with use of the data contained in the 

topographic spatial database. The authors set a research task consisting in such selection of the 

relevant parameters of the generated map that would make it optimally suitable for predicting the 

influence of the geographic environment on the movement of the UGV. This influences the functional 

properties of the developed map, which in turn determines the possible scope of its application. These 

parameters are connected with the accuracy of the map, which manifests itself in the time needed by 

the computer system to develop such map. 

2. Method 

2.1 Study area 

Maps of passability have been generated in the area in the province located in the eastern part of the 

Czech Republic – Olomouc Region. The selection of this area was dictated by the fact that it is an area 

with a variety of terrain features that affect passability (Figure 1). The area occupies approximately 

64 km2 and encompasses large watercourses (the Morava river and the Trusovicky Potok), as well as 

vast areas of forests (17% of the analyzed area). In this area, there are both large terrain slope gradient 

levels - up to 10 degrees and extensive plains. It also includes the provincial capital (Olomouc). The 

density of the road network is variable and depends on the degree of land use. 

 

 
Figure 1. Study area 

2.2 Used data 

In the presented methodology for the development of land passability maps, a topographical database 

based on a Digital Landscape Model (DLM) was used. Models of this type are the backbone of 

national spatial information infrastructures created in various countries. An example of such a national 

database is BDOT10k (Baza Danych Obiektów Topograficznych - Database of Topographic Objects 

in scale 1:10 000, covering the territory of Poland) and used in this article database DMU 25 (Digitální 
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model území - Digital Model of Area, which is the database for territory of the Czech Republic). 

Another interesting example is the OpenStreet map. This is open source database, which covers the 

whole world. The model used in these examples assumes storage of terrain objects as vector data. 

Depending on the spatial characteristics of the objects, it will be collected in the form of closed 

polygons (so-called area objects), broken lines (line objects), and singular points (point objects).  

The maps of passability generated for UVG, are developed mainly for military purposes; therefore in 

experiments, the DMU, a standardized vector spatial database, was used. In terms of detail, it is 

equivalent to a topographic map at scale 1:25 000. In its conceptual model, there are 170 thematic 

categories, grouped into nine thematic layers: boundaries, terrain relief, physiography, transport, 

development, hydrography, vegetation, aviation content, and industry. This is a standard, general 

geographic elaboration, used by the Czech Republic Armed Forces (as well as others NATO Forces), 

whose data organization is very precisely defined in the Digital Geographic Information Exchange 

Standard (DIGEST) as a product of Defence Geospatial Information Working Group (DGIWG). It 

imposes a unified way of organizing data and developing the database on all compilers. The study 

carried out used this compilation as the primary source of data on land cover elements. The terrain 

formation data was derived from the DMR4 (Digitální model reliéfu 4. Generace – Digital Model of 

Relief of 4. generation), on the basis of which a numerical model of land slopes was also generated. 

Used digital terrain model stores information about relief in form of grid in 5 m by 5 m size. 

2.3 Processing data 

The main assumption for the conducted research was to refer passability to a square-shaped primary 

field. For each field was calculated Index of Passability (IOP) for the surface area of the whole square. 

IOP is an estimate reflecting the degree of limitation of vehicular speed by land cover elements. In this 

study, this index is determined on a continuous scale and decreases from 1.0 (easily passable terrain – 

GO terrain) to 0.0 (impassable terrain – NO GO terrain). In order to do so, grids of squares of different 

side lengths (25, 50, 100, 200 and 500 m) were generated at the analyzed area. For each of them, the 

information about elements of land cover were obtained in an automated way, with use of a specially 

written software application (Table 1):  

• for surface object classes (e.g. forests, lakes, built-up areas) – the total surface area of each 

area found in the given primary field; 

• for linear objects (rivers, roads, railways, contours) – the total length of the linear object 

located within the given primary field; 

• for singular objects (buildings, enclosures) – the number of objects located within the given 

primary field. 

Apart from that, a digital terrain inclination model was generated for the analyzed area. It was created 

with use of DMR4. Each primary field was assigned the land denivelation parameter defined as the 

average slope, calculated from all points of the digital model of land inclinations located in the area of 

the given primary field. 

Table 1. Exemplary visualisation of data in used data model 
 

Area (e.g. forests) Line (e.g. roads) Point (e.g. building) Slope 

    

The developed data model constituted the basis for generating land passability maps. They were 

created with use of the method based on the Vegetation Roughness Factor (denoted as VRF). VRF is a 
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numerical evaluation reflecting the degree of the speed limit related to the movement of vehicles 

through the different types of land cover. 

Each class of objects found in a given data model was assigned a resistance coefficient, provided 

that classes of objects which facilitate the passability of troops, it takes the value in the range (0, 1> 

(e.g. roads, tracks and open area), classes identified as hindering (limiting) passability were assigned 

the index of VRF (IVRF) in the range <-1,0) (waters, forests, built-up areas, etc.), while classes of 

objects that do not affect passability (neutral) were assigned a coefficient of 0 (these are mainly single 

objects or cartographic elements such as descriptions or contours).  

The index of passability (IOP) assigned to the whole primary field was calculated with use of the 

following algorithm: 

• Due to the fact that information on land cover for each primary field is stored in the database 

in different units and that it has different numerical ranges, prior to the start of the analysis 

they are normalised to the range from 0 to 1, pursuant to the formula (1). 

( ) new_minnew_minnew_max

minVmaxV

minVV
V' +−

−

−
=       (1) 

where V is an input value and the V’– normalized value of input. Consequently, [Vmin, Vmax] is the 

interval of input data and [new_min, new_max] is a new data range [0, 1]. 

• Indices of passability for all primary fields were calculated with use of the following formula: 

.....I
n3
VRFN

n3
iI

n2
VRFL

n2
iI

n1
VRFA

n1
iIOPi +++=

  (2) 

where: 

• IOPi is the index of passability of primary field with i index. 

• For area objects, Ai
n1 is a normalized area (within i primary field) of n1 feature class. 

• For linear objects, Li
n2 is a normalized length (within i primary field) of n2 feature class.  

• For singular point objects, Ni
n3 is a normalized quantity (within i primary field) of n3 feature 

class. 

• IVRF is the Vegetation Roughness Factor of n 1, 2 or 3 feature class. 

Formula (2) takes into account all object classes that are contained in the analyzed databases. The 

obtained indices of passability are then again normalised to a constant range from 0 to 1, pursuant to 

the formula (1). 

A detailed description of the method presented above is provided in [6, 7]. In order to apply the 

methodology described above, it was necessary to assign a terrain resistance coefficient to each class 

of objects contained in the used database (DMU 25). The coefficient was assigned individually to a 

specific class of objects – see Table 2.  

Table 2. Sample VRF (IVRF)values, source: own study 

Facilitating Hindering Neutral 

Object IVRF Object IVRF Object IVRF 

Roads 0.7 River -1.0 Monument 0 

Footpath 0.4 Swamp -0.8 Tree 0 

Firebrake 0.3 Forest (area) -0.8 Chimney 0 

Tunell 0.2 Orchard -0.5 Forest (point) 0 

Open areas (without area 

objects) 
0.5 Slope -0.4 

All cartographic 

elements (eg. labels) 
0 

As a result of the application of the above algorithm 5 passability maps were created (for sizes 

of primary fields – 25, 50, 100, 200 and 500 m). In order to compare the content of these maps, the 

grid (in size 200 by 200 m) of control points were placed in the test area (Table 3A). For each of these 

points, data were obtained about the passability of the primary field where the given control point was 
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located (Table 3B). This operation was performed for all generated maps. Thus, each control point was 

assigned 5 indices of passability. In order to analyse the correlations between the generated maps, 

Pearson correlation matrices were calculated for the indices of passability obtained for all control 

points. Calculations were performed separately for each size of the primary field. Basic statistic 

parameters of the obtained distributions of Indexes of Passability (arithmetic average and standard 

deviation) were calculated. 

Table 3. A - distribution of the control points in 200 by 200 m grid,  B – visualisation 

of data collection for a control point 

A B 

  

3. Results 

The indices of passability determined for various primary field sizes were a basis for generating 

passability maps on various levels of detail. Fragments of maps created for various sizes of square 

shaped primary fields are presented in Figure 2. 

Map from OpenStreetMap 20 m 50 m 

   

100 m 200 m 500 m 

   

Figure 2. Passability maps on various levels of raster data detail 
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The Pearson correlation matrices that demonstrate the degree of similarity between individual maps 

are presented in Table 4. These matrices, together with the basic statistic parameters were generated 

separately for control points generated in grid in size 200 by 200 m (1576 points on test area). 

Table 4. Demonstration of the degree of similarity between individual maps 

 
Average Std. dev. 25 m 50 m 100 m 200 m 500 m 

25 m 0.61 0.17 1 0.94 0.86 0.83 0.65 

50 m 0.62 0.16 
 

1 0.92 0.87 0.67 

100 m 0.62 0.16 
  

1 0.90 0.72 

200 m 0.62 0.15 
   

1 0.79 

500 m 0.68 0.17 
    

1 

The distribution of the generated indices of passability for each tested primary field size is presented in 

the histograms in Diagrams 1-5 (see Figure 3). They were generated for control points located on test 

area. 

     

Figure 3. The distribution of the various generated indices of passability 

The total map generation time consists of: preparation of the data model (grid of squares) and direct 

calculation of the index of passability. The results of these operations for the test area (Olomouc 

province), are presented in Table 5. Calculations were performed on a computer with Intel Xeon e3-

1230 v5 3, 4 GHz (4 cores) processor, memory: 8 GB DDR IV. For this hardware configuration, the 

time of preparation of the data model for 1 square (regardless of its size) is 1.1 s. Calculation of IOP, 

in accordance with formula (2), for one square takes approx. 0.03 s. 

Table 5. Map generating time, source: own study 

Square 

side length 

Number of squares in 

tested area 

Time of data model 

preparation 

IOP 

generating 

time 

Total map 

generating time 

25 m 101869 1 d 7 h 08 min 51 min 1 d 7 h 59 min 

50 m 25630 7 h 50 min 13 min 8 h 3 min 

100 m 6490 1 h 59 min 3 min 2 h 2 min 

200 m 1664 0 h 30 min 1 min 31 min 

500 m 289 0 h 5 min > 1 min 5 min 

4. Discussion 

Visualisations of the generated passability maps (Figure 2), demonstrate unambiguously that maps 

created basing on the smallest primary fields (25 m) enable to distinguish a large number of narrow 

UGV movement corridors. This map shows the course of roads, paths and ducts in forests, which are 

the key element for the movement of all vehicles (not only UGVs). For larger primary fields (50 and 

100 m), the details of the terrain situation gradually disappear. These maps only show a general outline 
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of terrain barriers. In maps generated with use of the largest analysed primary fields (200 m, and 

particularly 500 m), the generalisation level is so high that only the largest, consistent impassable 

areas are distinguishable. These maps are unsuitable for planning the routes of relatively small 

vehicles such as UGVs due to the high degree of content generalisation. This results from the fact that 

each individual primary field contains numerous elements that affect passability both in a positive and 

negative way and the passability of all these elements is “averaged” for the whole field. 

The correlation matrices (Table 4) calculated basing on the IOPs obtained for control points in the 

200 by 200 m grid, demonstrates that the correlation coefficient between maps diminishes with the 

increase in differences in the size of primary fields. This is a linear decrease (Figure 4A). However, it 

should be noted that the correlation coefficients between maps generated for primary fields of similar 

sizes are very high (e.g. 0.94 between maps based on 25 m and 50 m primary fields and 0.90 between 

maps based on 100 and 200 m primary fields). This proves that maps generated with use of primary 

fields of similar sizes are highly similar. The PPC between maps with the highest difference in 

primary field sizes (25 and 500 m) is low and equals 0.65. 

 

Figure 4. The correlation matrices based on the IOPs between (a) PCC and primary field size (for 25 

m fields) and (b) map generating time and primary field size 

Figure 3 (25-100 m square) showing the histograms of IOP distribution, clearly illustrate the 

increase in the number of samples with the index of passability of approx. 0.7. This peak gradually 

disappears for larger sizes of primary fields (Figure 3, 200-500 m square). The main reasons for the 

discussed growth are roads that are visualised in passability maps based on the smallest primary fields 

(25, 50 m). Along with the increase in generalisation that takes place gradually, with the growing size 

of primary fields, the course of roads becomes less and less visible on the map. This is manifested in 

the diagram of the distribution of indices of passability for the largest primary fields (200 and 500 m). 

They do not contain the characteristic increase in the number of primary fields with an IOP = 0.7. 

An essential factor that affects the possibility to use the presented methodology, for operational 

purposes, is the time of generating passability maps of a specific accuracy. The conducted tests 

demonstrate, that it takes approx. 30 hours for the developed application to create the most accurate 

map for the smallest primary field (side length 25 m) and an area of 16 km2 (Table 5). Increasing the 

size of primary fields and thus lowering the number of squares in the tested area, shortens the time of 

generating the resulting map considerably (to only 8 hours for the 50 m primary field, Figure 4B). 

5. Conclusions 

The presented methodology for the development of passability maps for UGVs is universal and 

completely automated. The determined index of passability may be calculated with use of any vector 

spatial database. It offers a possibility to generate primary fields of various shapes and sizes. Finally, 

different Vegetation Roughness Factor coefficients may be selected for specific classes of objects 

included in the used spatial database. This is quite important for creating passability maps for various 

types of vehicles and terrain conditions. An example might be a large, heavy vehicle, for which the 

forest may be a major barrier (then, the “forest” class of objects should be assigned a low VRF, e.g. -
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0.8). On the other hand, the forest will not constitute an important barrier for a small vehicle, so a 

higher VRF may be assigned in this case (e.g. -0.2), as such vehicle may manoeuvre between trees. 

The generated passability maps may also be used for planning the movement of UGVs. The operator 

of an unmanned vehicle may use them as auxiliary materials while controlling the vehicle. Moreover, 

planned routes of the unmanned vehicles may be placed on such maps. However, the most interesting 

way to use the generated maps is to record them in the vehicle memory. This is particularly important 

for fully automated devices, because, with the support of other sensors installed in the UGV, this may 

enable the algorithms implemented in the vehicle to determine the optimum route independently and 

thus the vehicle may move across the terrain in a completely automated way. 

The conducted tests demonstrated that passability maps based on smaller primary fields are more 

suitable to be used by UGVs, due to higher level of detail. The smallest primary field used in the 

discussed analyses was a 25 by 25 m square. Hence, it would be reasonable to generate passability 

maps based on even smaller primary fields (e.g. 10 by 10 m or 5 by 5 m). This will be the direction of 

further research. Another element s to increase the number of parameters that are taken into account 

when determining the index of passability. The currently presented algorithm takes into consideration 

only terrain cover and relief elements to determine passability. It is planned to expand its scope by 

considering soil parameters as well as weather conditions [18] and accuracy of data e.g. see [19, 20]. 
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