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Abstract. This is first work is done on the application of TanDEM-X data satellite data for 

the Malaysian coastal waters. This study aims at comparison between Hopfield neural network 

and Pareto optimal algorithms for modelling sea surface current using TanDEM-X satellite 

data. In fact, X-band data have a great potential for retrieving sea surface parameters such as 

sea surface current movement and ocean wave spectra. Therefore, TanDEM-X is  the term of 

the satellite operation hovering the two satellites in a strictly controlled foundation with regular 

distances between 250 and 500 m. The study of ocean surface current is important for 

understanding the coastal water circulation. The set of TanDEM-X satellite data are examined 

by using Hopfield neural network algorithm. The sea surface current is retrieved based on the 

energy function. Therefore, the Pareto optimal algorithm is used to determine the optimal 

solution for nonlinearity problem which is raised due to the Doppler frequency shift impact. 

The study shows that the Pareto optimum resolution has highest performance than Hopfield 

neural network rule with lowest RMSE of ±0.08. Further, Pareto optimum resolution can verify 

the ocean surface current pattern variation on coastal water from TanDEMX data. Last, 

TanDEMX data reveals a superb guarantees for retrieving ocean surface current with X-band. 

 

1.  Introduction 

Complexity of ocean nature needs standard instruments and procedures to comprehend. Despite 

advance technology of ocean in situ measurements, large ocean area cannot survey with effortless[1]. 

In reality, whether circumstances induce storms, which cause disasters in coastal zone that do not 

allow oceanographers and researchers to acquire timeless and effortless in situ measurements. 

Recently, researchers have shown an increased interest in ocean studies using remote sensing 

technology, which can image large-scale ocean area and provides precisely information on air-sea 

surface interactions [2-9]. Synthetic aperture radar (SAR) is recognized as  the potential radar sensor 

for monitoring the dynamic ocean surface.  One of an attention-grabbing topic is current flow that is 

needed short go back satellite cycle and high resolution. These will provide precisely data concerning 

current dynamic flow [10][12]. In fact, current is very important for ship navigation, fishing, waste 

matter substances transport and sediment transport [2][11]. Respectively optical and microwave 

sensors are enforced to monitor the current flows.  Indeed, the ocean surface dynamic options of sea 

surface current is vital parameters for atmospheric-sea surface interactions. In this regard, the global 

climate change, marine pollution and coastal risky are preponderantly dominated by current speed and 

direction [12]. 

     The measurements of ocean current from space relies on the electromagnetic signal. Truly, 

associate degree of an electromagnetic signal of optical and microwave  reflects from the ocean 

carrying records concerning one among the first discernible quantities that are the colour, the beamy 
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temperature, the roughness, and also the height of the ocean [13]. The principal conception to retrieve 

the ocean surface current from SAR information is perform of the Doppler frequency shift theory [14]. 

Incidentally, the orbital quality of the ocean wave and surface current dynamic interactions will cause 

shifting of the radiolocation signal within the angle direction i.e. the flight direction that is thought 

because the Doppler frequency shift [11]. In truth, the surface current dynamic is virtual to the orbital 

movement and an antenna rotation of the synthetic aperture radar. Consequently, the Doppler 

frequency shift, reckon the SAR antenna angle of view that is virtual to the orbital mechanical 

phenomenon rotation [15]. Consequently, the connection between the ocean surface dynamic orbital 

movement and also the SAR satellite orbital motion would be nonlinear attributable to the Doppler 

influence [16]. In literature, there are many mathematical algorithms that are supported physical 

models to retrieve ocean surface current from SAR information. In other words, these algorithms area 

unit enforced to map the Doppler frequency spectra into the important ocean surface current speed. 

However, these techniques are restricted attributable to the nonlinear quality of ocean surface dynamic 

behaviours and radar signal [3]. In this regard, the Doppler rate has coarser resolution than radar cross 

section on the angle direction [17]. 

     In this paper, we have a tendency to address the question of  retrieving ocean surface current 

pattern from TanDEM-X data. This is often verified an exploitation of neural network technique.  

Hypotheses examined are: (i)  Hopfield neural network based mostly multi-objective optimisation via 

Pareto  dominance algorithmic rule is executed to TanDEM-X data; (ii) multi-objective optimisation 

via Pareto dominance is used as procedures for eliminating inherent speckle from TanDEM-X data; 

and (iii); the nonlinearity of the physicist frequency shift is reduced multi-objective optimisation via 

Pareto dominance. 

     The novelty of this work is to optimize the lapses occurring on retrieving sea surface current 

parameters from TanDEM-X satellite data. Hypotheses examined are: (i)  Hopfield neural network 

based mostly multi-objective optimisation via Pareto  dominance algorithmic rule is executed to 

TanDEM-X data; (ii) multi-objective optimisation via Pareto dominance is used as procedures for 

eliminating inherent speckle from TanDEM-X data; and (iii); the nonlinearity of the physicist 

frequency shift is reduced multi-objective optimisation via Pareto dominance. 
 

2. Data Acquisitions  

Two styles of knowledge area unit needed to retrieve  sea surface current parameters: TanDEM-X  of  

SAR; (ii) and therefore the real unaltered  sea surface current measuring throughout TanDEM-X 

satellite overpassed. 

 

2.1 TanDEM-X  Data  

Pair of Terra-SAR satellite data is acquired by the TanDEM-X satellite on May 6 2017. The first 

image was acquired 7:27:17 am while the second image acquired at 19:20:06 pm. The data are in 

spotlight mode with X-band and  HH and VV polarization.  These data are single look complex 

formatted data.  

      The TanDEM-X operational consequence involves the coordinated operation of 2 satellites flying 

in adjacent configuration. The alteration constraints for the formation are: (i) the orbits ascending 

nodes, (ii) the angle between the perigees, (iii) the orbit eccentricities and (iv) the phasing between the 

satellites. The observance of ocean currents is a vital facet of assessing climate changes. Space borne 

SAR along-track interferometry (ATI) has the promise to considerably contribute to the present field. 

It will offer large-area, world-wide surface current measurements. The matter of mapping relatively 

low velocities are often resolved by formations of SAR satellites that yield sufficiently sensitive ATI 

measurements [18]]. 

      In this study, the Hopfield algorithm relies on the TanDEMX information. The TerraSAR-X and 

TanDEM-X satellites transmit identical SAR instruments working at 9.65 GHz frequency (X-band). 

Throughout some devoted operations, both satellites are placed associate exceedingly in a very special 

orbit configuration with a brief along track baseline providing a probability for current measurements. 

The data utilized in this study were uninheritable in stripmap (SM), bistatic (TS-X active / TD-X 

passive) mode and VV polarization [14][18]. 
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2.2 In situ ocean wave measurement     

Following Marghany [19] sea surface current speed and direction are collected by Aquadopp® 2MHz 

current meter (Figure 1). For the surface current knowledge acquisition, the Aquadopp® 2MHz 

current meter factory-made by Nortek AS (Figure1), Scandinavian country was used. The 

instrumentality could be a standalone instrumentation exploitation Doppler based mostly technology 

to measure surface currents at the deployment web site. The instrumentation is intended with 

intrinsically memory and internal battery pack wherever it may be designed to record and store 

information internally for self-deployment[19]. 

 

 
Figure 1. Aquadopp 2Mhz current meter deployment. 

 

     The  Aquadopp® 2MHz current meter was deployed on coastal water of Teluk Kemang, Port 

Dickson, Malaysia on May 6 2017. (Figure 2). Two phases of data collection were carried out: (i) at 

6:15 am to 8:15 am and (ii) at 6:15 pm to 8:15 pm. The surface current data was measured for 

intervals of 2 hours  for both phases. 

 

 
Figure 2. Geographical location of in situ measurements “  “. 

3. Algorithms  

 

3.1 Hopfield Neural Network Algorithm  

Marghany [19]  has implemented Hopfield neural networks for RADARSAT-2 SAR data to retrieve 

sea surface current. This section has been retrieved from Marghany  [11]  work. Therefore, Hopfield 
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neural networks is used with TanDEM-X data. Consistent with Côté and Tatnall [20], Hopfield neural 

networks is considered as a promising method for determining a minimum of energy of function. For 

instance, motion analysis and object pattern recognitions might be coded into an energy function [21]. 

Furthermore, the actual physical constraint, heuristics, or prior knowledge of sea surface features, 

nonlinearity and the Doppler frequency shift [11] can be coded into the energy function.  

A pattern, in the context of the N node Hopfield neural network is an N-dimensional vectors 

),.......,( 21 nvvvV   and ),.......,( 21 nuuuU   from space 
NS }1,1{ . A special subset of S  is set 

of exemplar },1:{ KkeE k  .where ),.......,,( 21 n
kkkk eeee  and k  is exemplar pattern where 

Kk 1  [19]. The Hopfield net associates a vector from S with an exemplar pattern in E. Following 

Marghany [19],  Hopfield net is involved that 
jiij ww  and 0iiw . Succeeding, Cao and  Wang, 

[20], the propagation rule i  which defines how neuron sates and weight combined as input to a 

neuron can be described by equation 1 as follows: 
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     The Hopfield algorithm has consisted of (i) assign weights to synaptic connections; (ii) initialize 

the net with unknown pattern; and (iii) iterate until convergence and continue features tracking 

(equation 2) [5]. First step of assign weight 
ijw  to synaptic connection can be achieved as understands: 
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      Hopfield neural network could be identified current pattern features by mathematical comparing to 

each other in order to build an energy function [19]. According to Côté and Tatnall [20] the difference 

function to determine the discriminations between different features ji ff ,  by a given equation 3 as 

follows: 
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      (3) 

where,
 

"L  is curvature shape of current feature, ijdis  is the distance between sea surface current 

features if  and jf , and G and H and J are constants, and   is an angle of orientation of local curve 

element. In addition, "dist  and " are the minimum acceptable distance and the maximum acceptable 

rotation angle, respectively before energy function[19-21]. 

 

3.2 Pareto Algorithm  

Following  Atashkari  et al., [22], the Multi-objective optimization (MOB) which is also termed the  

multi-criteria optimization or vector optimization. In this regard, it has been defined as finding a 

vector of decision variables satisfying constraints to give acceptable values to all objective functions. 

Generally, it can be mathematically defined as: find the vector 
* * * *

, ,...,
1 2

T
S SnS S  

 
to optimize 

                                  ( ) ( ), ( ),..., ( )
1 2
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F S f S f S f S
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subject to m inequality constraints 

 

,            (5) 

 

and p equality constraints 

( ) 0    ,      i 1  to  mg Si  
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                                            ( ) 0     ,     j 1  to  ph Sj   ,          (6) 

where 
* nS   is the vector of decision or design variables, and ( ) kF S   is the vector of objective 

functions which each of them be either minimized or maximized. However, without loss of generality, 

it is assumed that all objective functions are to be minimized.  

     A point 
*S   (   is a feasible region in 

n  satisfying equations (4) and (6) is said to be Pareto 

optimal (minimal) with respect to the all S  if and only if 
*( ) ( )F S F S . Alternatively, it can be 

readily restated as  ki ,...,2,1 ,
*{ }S S   

*( ) ( )i if S f S    kj ,...,2,1  : 

*( ) ( )j jf S f S .  

     In other words, the solution 
*S  is said to be Pareto optimal (minimal) of  ocean current pattern if 

no other solution can be found to dominate 
*S  using the definition of Pareto dominance. For a given 

MOP, the Pareto front ƤŦ٭ is a set of vector of objective functions which are obtained using the 

vectors of decision variables in the Pareto set Ƥ٭, that is ƤŦ٭ 1 2{ ( ) ( ( ), ( ),...., ( )):kF S f S f S f S S  

Ƥ٭}. In other words, the Pareto front ƤŦ٭ is a set of the vectors of objective functions mapped from 

Ƥ[19]  ٭. 

4. Results and Discussion 

The sea surface current velocities are simulated and modelled from the TanDEM-X data spotlight with 

VV polarization. The simulation has been done along the range direction. The simulated velocity is 

taken across the location of The  Aquadopp® 2MHz current meter (Figure 3). The test area is shown 

in Figure 1 which is inshore the coastal water of  the Malacca Straits, Malaysia. Figure 4 shows 

TanDEM-X data cross section values increased with the increasing of the incidence angle where the 

backscatter value is raised to -10 dB. The second curve is the result of the Doppler shift frequency. 

The curve shows that the Doppler shift frequency values were fluctuated with value decreasing in the 

onshore 2km to 5 km. The frequency value in the nearshore area was extremely low with 0.1 m/s. The 

spectra peak of Doppler frequency is 0.04 with range frequency of -200 Hz. The average of the 

Doppler shift frequency in the onshore area was 0.01 Hz. This could be due to low tide level of 0.3 m 

which was observed during in-situ data collection. 

 
Figure 3. Doppler Spectra Intensity of TanDEM-X data 
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     The TanDEM-X data with X-band of the spotlight product which  derived from the strip-map mode 

has utilized in this study. The Figure 4 indicates the results that are retrieved from Hopfield rule and 

Pareto rule. It is attention-grabbing realize that Pareto algorithmic rule has found the most effective 

solution for sea surface current pattern as compared to Hopfield neural network (Figure 4b). The 

morphology of ocean surface current structures are well known exploitation Pareto algorithmic rule. 

Indeed, random generation of 1000 iterations at intervals 3 min are needed to realize the performance 

of the Pareto algorithmic program. Clearly, Pareto algorithm delivered a spatial variation of surface 

current from onshore to offshore. Onshore surface current is dominated by maximum value of 0.12 

m/s while the offshore surface currents have maximum value of 0.2 m/s. 

                                    (a)                                                    (b) 

 

Figure 4. Ocean current pattern simulated  from (a) Hopfield neural network result (b) Pareto optimal 

solution 

Figure 5 shows significant correlations between the result of sea surface current velocities which 

simulated from TanDEM-X data and the result extracted in the in-situ measurement.  Figure 5 

illustrates how the correlation coefficient changes as the linear relationship between the two variables 

is altered. While in regression the emphasis is on predicting one variable from the other, in correlation 

the emphasis is on the degree to which a linear model may describe the relationship between two 

variables. Clearly, there is a good relationship between the two variables with R² of 0.75.   
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Figure 5. Significant correlation between Pareto Optimal and in situ measurements 

However, this relationship is not perfect, but seems to have a positive linear relationship, and 

corresponds to what one would expect when considering two variables correlated and following the 

assumption of normality. Table 1 delivers the accuracy of this study.  Clearly, the Pareto optimal 

solution has an excellent performance than Hopfield algorithm, with lowest P value of 0.00006 and 

RMSE of ±0.009 and highest r²  of 0.75.  Consistent with  Marghany and Mansor [12] and Marghany 

[19], the Hopfield neural network is anticipated as optimization tool to reduce the impact of the 

Doppler nonlinearity in the SAR data. Subsequently, multi-objective optimization is fairly deliberated  

as attaining a vector of verdict variables satisfying constraints to offer precise to all objective 

functions. This confirms study of Marghany and Mansor [12]. 

 

Table 1. Statistical regression of current meter  sea surface current and retrieved one   by  Hopfield 

neural network based Pareto optimal solution  

 

Methods                                           R2                         RMSE (±m/s)                                 P 

 

Hopfield neural network-               0.55                              0.2                                          0.00060 

 Current 

 

Pareto optimal solution-       0.75                             0.08                                        0.000086 

Current meter 

 

 

    Additionally, the multi-objective optimisation via Pareto dominance acquires a particular curve that 

reduces the inconsistency between the certain ocean surface current from TanDEMX data and in situ 

measurements. In this understanding, the new approach supported TanDEMX data and as a result the 

multi-objective optimisation via Pareto Dominance, know how to minimalize the number of the 

residual faults for retrieving ocean surface current from TanDEMX data and delivers precise ocean 

surface current pattern spatial variation. This work recommends the work done by Atashkari  et al., 

[22] and Marghany [19]. Moreover, it is suggested to exploit the time series of TanDEMX satellite 

data for watching the daily coastal current  and its seasonal variations. 

 

5. Conclusion 
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This work initiated a new approach for sea surface current studies along Malaysian coastal waters. 

This is first experimental operated TanDEM-X satellite not only in Malaysia but in all the South-east 

Asian coastal waters. Two approaches are prescribed: (i) Hopfield neural network rule; and (ii) Pareto 

optimum resolution. The study shows that the Pareto optimum resolution has highest performance than 

Hopfield neural network rule with lowest RMSE of ±0.08. Further, Pareto optimum resolution can 

verify the ocean surface current pattern variation using TanDEMX data. In conclusion, TanDEMX 

data reveals a superb guarantees for retrieving ocean surface current with X-band with VV 

polarization. 

 

Acknowledgments 

The author thanks the Geoinformation Global Space for using the high-performance  programming 

facilities to build the code of  Hopfield and Pareto algorithms.  

References 

[1] ALPERS, W.R., ROSS, D.B. AND RUFENACH, C.L., et.al. 1981, On the Detectability of 

Ocean  Surface Waves by Real and Synthetic Aperture Radar[J]. Journal of Geophysical 

Research:   Oceans, 86(C7): 6481-6498. 

[2] ALPERS, W.R. AND BRUENING, C., et.al. 1986, On the Relative Importance of Motion-

Related Contributions to the SAR Imaging Mechanism of Ocean Surface Waves[J]. IEEE 

Transactions on Geoscience and Remote Sensing, 6:873-885. 

[3] AMINI, A.A., CHEN, Y., CURWEN, R.W., MANI, V. AND SUN, J.,  et.al. 1998, Coupled B-

Snake Grids and Constrained Thin-Plate Splines for Analysis of 2-D Tissue Deformations 

from Tagged MRI[J]. IEEE Transactions on Medical Imaging, 17(3):344-356. 

[4] BEAL, R.C., TILLEY, D.G. AND MONALDO, F.M., et.al. 1983, Large‐and Small‐Scale 

Spatial Evolution of Digitally Processed Ocean Wave Spectra from SEASAT Synthetic 

Aperture radar[J]. Journal of Geophysical Research: Oceans, 88(C3):1761-1778. 

[5] FORGET, P., BROCHE, P. AND CUQ, F., et. al. 1995, Principles of Swell Measurement by 

SAR with Application to ERS-1 Observations off the Mauritanian Coast[J]. International 

Journal of Remote Sensing, 16(13):.2403-2422. 

[6] HERBERS, T.H.C., ELGAR, S. AND GUZA, R.T., et.al. 1999, Directional Spreading of 

Waves in the Nearshore{J]. Journal of Geophysical Research: Oceans, 104(C4):7683-7693. 

[7] HASSELMANN, K. AND HASSELMANN, S., et.al. 1991. On the Nonlinear Mapping of an 

Ocean Wave Spectrum into a Synthetic Aperture Radar Image Spectrum and its 

Inversion[J]. Journal of Geophysical Research: Oceans, 96(C6):10713-10729. 

[8] LI, X., LEHNER, S. AND ROSENTHAL, W., et.al.2010. Investigation of Ocean Surface Wave 

Refraction Using TerraSAR-X data[J]. IEEE Transactions on Geoscience and Remote 

Sensing, 48(2):830-840. 

[9] MARGHANY, M.M., 2001, TOPSAR Wave Spectra Model and Coastal Erosion 

Detection[J]. International journal of applied earth observation and 

geoinformation, 3(4):357-365. 

[10] MARGHANY, M., 2011, Developing Robust Model for Retrieving Sea Surface Current from 

RADARSAT-1 SAR Satellite Data[J]. International Journal of Physical 

Sciences, 6(29):6630-6637. 

[11]   MARGHANY ,M.  2015,  Simulation Sea Surface Current from RADARSAT-2 SAR Data 

Using  Hopfield Neural Network. In Synthetic Aperture Radar (APSAR), 2015 IEEE 5th 

Asia-Pacific  Conference on (pp. 805-808).  IEEE 

[12]   MARGHANY M and MANSOR S 2016 , Retrieving of Sea Surface Current Variations from  

Sentinel-1A   Satellite  Data. CD of 37th Asian Conference on Remote Sensing (ACRS), 37th ACRS 

from  17th - 21st October  2016, Galadari Hotel,Colombo,Sri Lanka,pp.1-6. 

[13] ROMEISER, R. and RUNGE, H., 2007, Theoretical Evaluation of Several Possible Along-

Track InSAR Modes of TerraSAR-X for Ocean Current Measurements[J] . IEEE 

Transactions on Geoscience and Remote Sensing, 45(1):21-35. 



9

1234567890 ‘’“”

IGRSM 2018 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 169 (2018) 012023  doi :10.1088/1755-1315/169/1/012023

 

 

 

 

 

 

[14] ROMEISER, R., SUCHANDT, S., RUNGE, H., STEINBRECHER, U. and GRUNLER, S., 

et.al. 2010, First Analysis of TerraSAR-X Aong-Track InSAR-Derived Current 

Fields.[J] IEEE Transactions on Geoscience and Remote Sensing, 48(2):820-829. 

[15] MARGHANY, M., 2009, Volterra–Lax-Wendroff Algorithm for Modelling Sea Surface Flow 

Pattern from Jason-1 Satellite Altimeter Data[J]. In Transactions on Computational Science 

VI:1-18.  

[16] MARGHANY, M., 2011, Three-Dimensional Coastal Water Front Reconstruction from 

RADARSAT-1 Synthetic Aperture Radar (SAR) Satellite Data[J]. International Journal of 

Physical Sciences, 6(29): 6653-6659. 

[17]  MARGHANY M 2009,  Robust Model for Retrieval Sea Surface Current from Different 

RADARSAT-1  SAR Mode Data.  Signal and Image Processing Applications (ICSIPA), 

2009 IEEE  International Conference on, 2009, pp. 492-495. 

[18] ROMEISER, R., RUNGE, H., SUCHANDT, S., KAHLE, R., ROSSI, C. AND BELL, P.S., 

2014, Quality Assessment of Surface Current Fields From TerraSAR-X and TanDEM-X 

Along-Track Interferometry and Doppler Centroid Analysis[J]. IEEE Transactions on 

Geoscience and Remote Sensing, 52(5):2759-2772. 

[19] MARGHANY  M 2017 ,  Sea Surface Retrieving  from TanDEM-X Satellite Data. Proceedings 

of 38th   Asian Conference  on Remote Sensing (ACRS),New Delhi, India, www.a-a-r     

s.org/acrs/administrator/components/com_jresearch/files/.../689.pdf [Acess on March 12  

2018] 

[20] COTE, S. and TATNALL, A.R.L., 1997, The Hopfield Neural Network as a Tool for Feature 

Tracking and Recognition from Satellite Sensor Images[J]. International Journal of Remote 

Sensing, 18(4):.871-885. 

[21] CAO, J. and WANG, J., 2003, Global Asymptotic Stability of a General Class of Recurrent 

Neural Networks with Time-Varying Delays [J]. IEEE Transactions on Circuits and Systems 

I: Fundamental Theory and Applications, 50(1):34-44. 

[22] ATASHKARI, K., NARIMAN-ZADEH, N., DARVIZEH, A., YAO, X., JAMALI, A. and 

PILECHI, A., 2004, Genetic Design of GMDH-Type Neural Networks for Modelling of 

Thermodynamically Pareto Optimized Turbojet Engines[J]. WSEAS Transactions on 

Computers, 3(3):719-724. 

 


