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Abstract. Some hydrodynamic cavitation damage properties were studied in this letter. From 

the viewpoint of cavitation damage, the flowing characters near the wall, such as three features 

of the turbulent structures, streak structure; vortices; and bursting phenomena, the energy 

distribution, and the fluctuation character were explored. The characters of cavitation and 

cavitation damage were investigated, the relations among the cavitation, coherent structure and 

viscous effect were explored, and the energy characters in cavitation damage flowing field was 

studied. The results show that, the cavitation damage will have close relationship with the 

value distribution of the Lamb vector and the helicity. The relation between the cavitation 

damage and the Reynolds number essentially results from the eddy effect. The conceptive 

formula of cavitation damage was given. The paper clearly demonstrated the affecting factors 

to dominate the cavitation damage to make it show stochastic characters. These results may be 

useful to civil engineers. 

1. Introduction 

Cavitation can appear in both water and any other kind of fluid. Here, we mainly concern the 

hydrodynamic cavitation in present letter. The cavitation will be caused by the voids or bubbles 

containing vapor and gas in fluid if the pressure falls locally to that of the vapor pressure 

corresponding to the ambient temperature. The low pressure may be caused by a high speed or 

vibrations or others. The essential mechanism of acoustic cavitation is identical to that of 

hydrodynamic ones, so does the cavitation damage. 

The governing equations of the hydrodynamic bubble and that of acoustic ones are same. If a bubble 

collapses in the vicinity of a solid surface, then it may cause the cavitation damage, and none material 

will be free of cavitation erosion. The problem has challenged the mankind for more than one century. 

The cavitation damage is accepted at present as such, it is due to the concentration of mechanical 

energy on very small areas of the walls exposed to cavitation to exceed the resistance of the material 

resulting from the collapse of vapor structures. Usually, the cavitation contains the stages of formation, 

growth, oscillation, and collapse of bubbles in a liquid. As for the acoustic cavitation, besides above 

characters, it has effect of emission of light, dubbed as sonoluminescence (SL), which is often divided 

into single-bubble sonoluminescence (SBSL) and multibubble sonoluminescence (MBSL). 

Both the turbulence and the cavitation damage remain open problems now, though there are many 

research results [1-15]. In present letter, from the viewpoint of cavitation damage, we combine the 

turbulence and the cavitation damage together, to give a conceptive picture to study the some 

hydrodynamic cavitation damage properties. 
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2. Flowing characters near the Wall 

Here, we take the wide open channel flow as an example. In early time, i.e. from the 1910s to the 

1930s, turbulence was regarded as a completely stochastic phenomenon in which a randomly 

fluctuating portion of velocity field is superimposed. In the 1960s, people knew that large-scale 

motions govern the transport properties of a fluid flow, and small-scale motions are responsible 

mainly for dissipative processes. Traditionally, the profile of the mean velocity is divided as: a) a 

linear sub-layer, 0 5y  , where 
  yu ;  b) a buffer layer, 305  y , the region of maximum 

average production of turbulent kinetic energy; c) an overlap layer,  y30 , the approximate energy 

equilibrium; and d) a far outer layer, where the law-of-the-wake holds. Here y = ( yu* )/ , u = 

( u / *u ), and   is the kinematic viscosity coefficient, and *u  is the shear velocity, y is the distance 

from wall, and u is velocity. As for the open channel flow case, the fluctuating energy mainly come 

from the region near the bottom. The energy flux of mean flow transfers from the channel surface to 

bottom, while the energy flux of fluctuating flow transfers from bottom to surface, and this process is 

dynamic and reversible. From the viewpoint of phenomenology, the infinite hierarchy structure of 

flow is only a media in which the energy transfers between the mean flow and the fluctuating flow.  

There are three features of the turbulent structures near wall, a) the forming and developing of streak 

structure; b) the forming and developing of longitudinal vortices, transverse vortices and horseshoe 

vortices; c) the bursting phenomena. The mutual influences among the three forms affect the coherent 

structure, such as low-speed streak, high-speed streaks, burst, ejections, sweeps, and various vortex 

structures. The vortex structure plays an important role, and the hairpin vortex is regarded as a basic 

vortex structure. The regeneration of various vortex structures is the structure source for turbulent 

boundary self-sustaining, and the burst is the energy source for turbulent boundary to sustain itself. 

The fluid flow near wall is closely related to that of the outer region to unify as a whole system.     

In the region where the cavitation damage occurs, though the surface of the solid is not always to 

parallel to a plane, showing various appearance with different curvatures, however, the structures of 

the flowing field are mainly same as above. 

 

3. Cavitation and Cavitation Damage  

In case of pressure =1 atm and at temperature=25 ºC, so called in normal conditions, the radius of 

nuclei is often scale with (~) 6105 R  m. In cavitation study, there is a useful parameter, i , which 

is called cavitation number, it reads: 
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Here, V  is the total gas content, and p  is the ambient pressure. T  and u  are ambient or 

referenced temperature and velocity, respectively, L  is the liquid density. 

Usually, the Rayleigh-Plesset equation is the governing equation of a spherical bubble in fluid: 
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Where, R  is bubble radius, t  is time, Bp (t) connects with equation of state. Without appreciable 

mass transferring of gas to or from the liquid, and the bubble containing some quantity of contaminant 

gas with partial pressure 
oG

p  at  size, oR , and temperature T . Then the equation of state (EOS) of 

gas in the bubble will become: 
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Here, ),()( VBVBV TpTp  , )( BV T  and )( BV Tp  are the saturated vapor density and pressure at the 

bubble temperature BT  respectively. Though this is only approximately, it grasp the essential 

characters in most cases. Sometimes, the temperature difference, ))()(( tTtTB  , leads to a different 

)( BV Tp , and this change the bubble dynamics, then, considering the equations of (2) and (3) , one has:    
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The meanings of the symbols are same as above. In equation (4), the first term denotes the 

instantaneous tension or driving term determined by the conditions far from the bubble. The second 

term is called the thermal term which may cause very different bubble dynamic behaviors.    

Research results show that, the theoretical predictions based on the equation (4) are roughly 

correspondence well with experimental results. If the dissipation can be neglected, then the rebound of 

the bubble will repeat for ever with definite story. To give a concrete model, we recommend a famous 

example, cited by many researchers, a typical single-bubble sonoluminescence bubble containing 

argon with 540 .R  μm, driven at f=26.5 kHz and 21.aP  atm, where, aP  is the pressure amplitude 

of the sound waves, and the ambient pressure P =105 Pa ≈ 1 atm. The surrounding liquid far from the 

bubble is degassed to some level and maintained at room temperature. Consequently, the bubble 

contains about 1010 argon atoms and about 2×10
8
 water molecules at the outset. The story is as 

follows. (1) Expansion. The bubble expansion is comparatively slow and the growth is sustained for 

almost half a cycle (~15 μs). In this phase, the bubble is in both thermal and mass transfer equilibrium 

with the liquid. Because of the falling pressure inside the bubble, it gains large numbers of water-

vapor molecules (evaporating from the wall) and also some gas molecules from the liquid. (2) 

Turnaround at maximum radius. The driving pressure begins to increase again, and the expansion 

comes to a halt. At maximum radius, then there is 07RR max . (3) Rayleigh collapse. As the external 

pressure increases, the inertial collapse of the liquid layers around the bubble begins. The radius 

decreases quickly (over about 4μs) from maxR  to a value comparable to 0R . During this collapse, 

water vapor recondenses at the wall and the argon atoms again become the dominant species inside the 

bubble. The bubble dynamics near minimum radius occurs on a time scale (‘‘turnaround time’’) of ~1 

ns . While the typical pulse width of SBSL 100–200 ps is still much smaller than this value. The other 

experimental measurements also show that this upper bound for the pulse width was much smaller 

than the time during which the bubble remained in its most compressed state. (4) Decoupling of water 

vapor. About 50 ns before the minimum radius is reached, the time scale of the bubble collapse 

becomes smaller than the time scale for the diffusion of water vapor. The water vapor still left inside 

the bubble is now trapped until the reexpansion. (5) Thermal decoupling. Only ~30 ns later, the 

accelerating bubble wall becomes fast enough that heat can no longer escape the bubble. (6) Onset of 

dissociation reactions. Once the temperature exceeds roughly 4000 K, water-vapor molecules start 

dissociating into OH- and H+ radicals. (7) Onset of light emission. Despite the temperature-limiting 

influence of water vapor, about 10000 K is finally reached in the bubble about 100 ps before 

maximum compression. At this temperature, with mechanisms of thermal bremsstrahlung and 

radiative recombination, finally, the SBSL is observed. (8) Maximum compression. At this point, the 

gas density reaches (almost) solid-state values. The deceleration of the bubble wall down to zero speed 

has begun to enhance random shape perturbations (Rayleigh-Taylor instability) and leads to massive 

energy loss through acoustic wave emission. The temperature and light emission peak, helped by the 

high densities that prevent further endothermic dissociation reactions. (9) Reexpansion. The bubble 

loses about 90% of its energy in the collapse, mostly due to acoustic emission. The reexpansion is 
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much slower than the collapse. The Rayleigh-Taylor instability grows and may overwhelm a strongly 

driven bubble during this stage. Only a small increase in radius and decrease in temperature are 

sufficient to dramatically reduce the photon absorption coefficient and quench the light emission 

uniformly for all wavelengths, about 100–200 ps after it begun. Thermal and diffusive equilibria are 

reestablished. (10) After bounces. The bubble rebounds to a much smaller size than the maximum 

radius before the main collapse. The afterbounces provide a parametric excitation that can accumulate 

and render the bubble shape unstable. The radial motion is, damped rapidly until the driving pressure 

dips into its negative cycle once again, and the oscillation starts anew. Over the whole cycle, shape 

perturbations may have been enhanced, then the bubble is parametrically unstable, or a net gain or loss 

of gas may have caused diffusive instability. In the correct parameter range, the bubble is stable with 

respect to both processes and continues to oscillate and emit light in exactly the same fashion. If in 

addition molecular gases such as nitrogen and oxygen are dissolved, the parameters, such as 

temperature may change, however, the whole mechanisms are identical. In practical civil engineering 

case, the cavitation phenomenon can be caused by a single bubble breakdown or/and the multi bubble 

breakdown. 

In civil engineering case, the cavitation can be classified into different types by the bubble shapes and 

distribution in time and space. Then, the different researchers give different results. Such as (1) i) 

travelling bubble cavitation, ii) vortex cavitation, iii) attached or sheet cavitation; iiii) cloud cavitation; 

(2) i) travelling cavitation, ii) fixed cavitation, iii) vortex cavitation, iiii) vibratory cavitation; (3) i) 

bubble cavitation, ii) sheet cavitation, iii) cloud cavitation, iiii) and various forms of vortex cavitation;  

(4) i) bubble cavitation, ii) tip-vortex, iii) sheet cavitation, iiii) cloud cavitation, etc. The common 

basis among them lies that, how the low-pressure regions are generated.     

The intermittency shows the small scale local moving pattern. The interactions between the vortices 

and waves show unsteady and nonlinear manners. The vortices and waves can moderate each other, 

and moreover, they can generate each other as well. So the cavitation is affected by the flowing field 

to show random characters. As the structures of the flowing field dominate the cavitation, there is a 

synchronism between the cavitation and the structures of the flowing field, though it is not so accurate 

sometime. The inverse U-shaped cavitation cloud is a relatively stable form to contain a strong vortex 

cavitation at the center surrounded by many small cavitation bubbles. The cavitation has local and 

random character. 

Within a process of a single bubble cavitation, besides the light emission, the temperatures can be up 

to 20,000 K, and heating and cooling rates of >1012 K/s, to suggest to generate high densities during 

bubble implosion. Cavitation can generate vortical structures, thus, it is a source to generate vorticity. 

In the final stages of collapse of a cavitation bubble, the pressure reach a high value (>1GPa) to force 

the liquid near the bubble wall briefly (~1 ns) into a metastable state of subcooling. As the coupled 

effect between the cavitation damage and the flowing field, this problem become more complicated. 

The cavitation damage show 4 stages: 1) incubation stage. There is no detectable weight loss in this 

period; 2) accumulation stage. There is significant increase of erosion rate with the worn surface to 

become rougher with a large number of small pits and deep craters; 3) steady stage. This stage 

possesses a constant erosion rate; 4) attenuation stage, it appears only under certain conditions. 

Cavitation damage has such character, both the craters and the pits do have nothing with the material 

nature, grain boundaries, slip lines, or any other structure feature. The cavitation damage shows 

random characters.  

The phenomenon of cavitation erosion connects with the gas dynamics, thermodynamics, 

hydrodynamic and material properties. A pit damage and a circular damage are the basic two forms. 

Studies show that, the velocity of the liquid jet during the bubble collapse can exceed 1.2km/s, even 

arrive at 7 km/s, a blast wave with peak overpressure exceeding several GPas. If a cavitation event 

happens, it can produce a lot of tiny bubbles. If the bubble happens to collapse vicinity near the solid 

surface, it can cause cavitation damage. 

 

4. The relations among the Cavitation, the Coherent Structure and the Viscous Effect 
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If mass force is potential (such as the gravity), Navier-Stokes (N-S) equation can be replaced by the 

vorticity transport equation (here, LUQ ,, are the uppercase vector forms of lu,, ): QL
t

Q





 , 

Lamb vector UQL  , UQ  , U  is the velocity vector. The space with large-magnitude Lamb 

vector accompanies high energy dissipation, while the space with high helicity ( UQh  ) 

accompanies low energy dissipation to make the spiral structure in flow field maintain a quite long 

time. If we define a dimensionless parameter as 
Q

L

2




, it behaves like the Reynolds number in cases 

where the denominator is non-zero, while it is feasible to apply the tiny flow element. Thus the 

Reynolds number can be considered as the ratio of the rate of momentum change in tangent direction 

to the viscous force in normal direction, which connects both the distortion in tangent direction and the 

dilating process in normal direction, and associates with fluctuation mechanism as well. As the 

Reynolds stress originates from diffusion and transport, so the Reynolds number connects with the 

Reynolds stress. Interactions among resonant vibration, frequency locking, and different Coriolis 

forces make the Reynolds stress show inhomogeneous and anisotropy properties, thus, 

),,,(Re *uvF iijij  , where   is shear stress, and   is the dissipation rate of turbulent energy per unit 

mass. Traditionally, the Reynolds number is only a dimensionless parameter, it being a tensor form 

may cause a paradox. In fact, the Reynolds number is used to act as a parameter to describe the 

flowing transition state. Usually, 


ccLu
Re  = Inertial force/viscous force. Here, cu  is characteristic 

velocity and cL  is characteristic length. As explanation of above Reynolds number, The Lamb vector 

connects closely with the eddy. The Reynolds stress, jiij uu   , connects obviously with 

fluctuating motion. The more the Reynolds stress is big, the more the fluctuation is strong, and the 

more eddies are abundant, thus, the cavitation damage will appear easily. At some value of the 

Reynolds number, the cavitation damage will have close relationship with the value distribution of the 

Lamb vector and the helicity.  

As for the vortex stability, in the direction of increasing pressure, the instability will increase. Both 

viscous diffusion and accelerated movement have stabilizing effect. In the regime for resistance with 

the square of velocity, According to Kolmogorov’s theory of turbulence, 25.075.0   , where   is 

the Kolmogorov’s length, and Ru /)( 3 , R is some characteristic length. It is known that the exact 

equation of velocity distribution for a turbulent channel flow is 
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









vu

H

y

y

u
1                           (5) 

where u  and v  are dimensionless fluctuation velocities scaled by 
*u , and H+ is dimensionless water depth. 

For open channel flows, in practice, the velocity distribution can be approximately described by Dou’s formula: 
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where L  and T  are the occurrence rates of laminar and turbulent flows in a specific location, respectively, and 

Lu  and Tu  are the velocities of laminar and turbulent flows, respectively. Letting ),( TL    denote 

intermittence, it has 0.1 TL  . The profile of velocity distribution should have the following form:  
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Because of the coupling relation of the cavitation damage and the flowing field, besides the solid 

properties, in the perspective of the flowing field, the cavitation damage has the similar form of 
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equation (7). Considering the formulae of (5), (6) and (7), one can be easy to know the relations 

between the cavitation damage and the flowing properties to make cavitation damage show stochastic 

character. 

 

5. The Energy Characters in Cavitation Damage Flowing Field 

The small scale eddies have random nature and the concrete mechanism of vortex breakdown 

dominates the adjacent local flowing structures. The stretch of vortex plays an important role in 

cascade process of turbulent energy. In turbulent flow, there are spiral-like vorticity distributions, 

which wrap up around strained vortex tubes, in fully developed turbulence. If the Reynolds number 

increases to infinity, the size of bubble to cause the cavitation damage will become very small. The 

observation shows that, the erosion often occurs when one of the legs of a vortex cavitation touches 

and collapses on the solid surface, the inverse U-shaped vortex has strong cavitation ability.  

The one difference between the turbulent flow and the laminar flow is that, the state of a turbulent 

flow at a given position depends upon upstream history and cannot be uniquely specified in terms of 

the local strain-rate tensor. At present, in all high Reynolds number turbulent refined flow modeling, if 

the turbulent model of Reynolds-averaged Navier-Stokes equation (RANS) is adopted, the turbulence 

kinetic energy (per unit mass), k, is developed on the phenomenon of the cascade process present in all 

turbulent flows involves a transfer of k from larger eddies to smaller eddies. We assume that the small 

scale motion occurs on a short time scale, thus such motion is independent of the relatively slow 

dynamics of the large eddies and of the mean flow. In fact, This is one of the spirit of Kolmogorov's 

(1941) universal equilibrium theory.     

 No matter what the final cavitation damage model and essential mechanism are, however, there are 

extra energy to release in the process of the bubble breakdown. Obviously, it will generate the 

fluctuating energy. About this issue, it deserve investigating further. 

 

6. Conclusions  

We reviewed and studied some hydrodynamic cavitation damage properties, and explored the relations 

between the cavitation damage and coherent structure in this paper. First, from the viewpoint of 

cavitation damage, the characters of the flowing structures near the wall, such as the forming and 

developing of streak structure; the forming and developing of longitudinal vortices, transverse vortices 

and horseshoe vortices; and the bursting phenomena were discussed. Then the energy distribution, 

especially, the relations between the fluctuation, such as Reynolds stress, with the flowing field 

characters was explored. The results clearly demonstrated that, it is the vortex to dominate the 

cavitation damage, thus it show stochastic characters both in time and in space. Not only the cavitation 

number, but also the Reynolds number, the Lamb vector and the helicity, are also important 

parameters to study the cavitation damage. Besides the solid characters, we gave a conceptive formula 

to describe the relation between the cavitation damage and the flowing field. The fact was also pointed 

out that, the process of bubble breakdown will generate the fluctuating energy, which is an important 

topic in turbulence modeling theory. 
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