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Abstract. Climate variability can be identified based on two climate parameters: Outgoing 
Longwave Radiation (OLR) and Precipitable Water (PW). South of Indonesia (2-10oS, 90-
15oE) is a rainfall monsoon region with relatively homogeneous characteristics in seasonal 
variations. However, the region has some certain sensitivities in responding variability from 
intraseasonal to interannual. Using the method of Empirical Mode Decomposition (EMD), S-
Transform and Wavelet for 30 years monthly data of OLR and PW (1980-2011), it was found 
that both of data indicate signal strengthening after 2010 which is related to Tropical Multi-
decadal Mode. Regional response from Intraseasonal to interannual variations confirm that 
both parameters are sensitive to 1-3 monthly (Intraseasonal Variation) related to MJO, 6 month 
and 1 year related to monsoon, the 2-7 year variability associated with El Niño Southern 
Oscillation (ENSO) on short term and medium scale period, whereas 10 yearly due to ENSO in 
longterm scale period and probably represent the phenomenon of the solar cycle. However it 
may be suggested that the 15 and 30 year variability would probably corresponded with ENSO 
and the Pacific Decadal Oscillation (PDO). 

1. Introduction 
Knowledge of climate variability is more important than the average climate [1]. This is because the 
value of statistical variability can indicate a variety of important information outside normal climatic 
conditions such as anomalies, trends and extreme events. The pattern of climate variability in the 
climate scenario  of the changing world is becoming increasingly important to note because the events 
of weather and climate extremes often acts as a catalyst which is sensitive to climate variability [1]. 

Climate variability can be identified by two climate parameters, namely Outgoing Longwave 
Radiation (OLR) [1-7] and Precipitable Water (PW) [8-12] which is a non-stationary data. OLR is 
associated with wavelengths of the sun (with a wavelength around the wavelength infrared) reflected 
/emitted by the earth's surface, or reflected by clouds. OLR is the longwave radiation of the sun that is 
absorbed by the earth's surface and reflected back into space. Some of this long-wave radiation is 
either retained or trapped in the atmosphere. Thus, the high (low) value of OLR parameters indicates 
few (many) clouds present in the atmosphere. 
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Another climate parameter is the PW defined as the amount of water vapor collected in a 
precipitated column of the atmospheric atmosphere as well as decreased as rainfall when the moisture 
content in the column has been condensed. The PW value is derived from the specific moisture data, 
which is a function of pressure and temperature. 

The relationship between OLR and PW is negatively correlated, meaning that if a region has a 
large PW value it means a small OLR value is in the region, and vice versa. This can occur due to high 
PW value that may indicate more and more clouds are formed as a result of convection activity. When 
clouds are formed, the atmosphere will absorb more radiation, hence the longwave radiation that is 
reflected back to space are small so that  OLR values will be small or low. 

Annual variation of OLR in southern Indonesia is showed by high OLR values indicating the dry 
season, and vice versa. Meanwhile, the relationship between PW and OLR is negatively correlated 
with a very high correlation coefficient value of -0.95 [13]. In addition, the annual cycle is clearly 
identified based on PW and OLR data [13]. However, the opposite relationship between PW and OLR 
over a longer period of time and variations from year to year in southern Indonesia have not been 
studied. Yet research on the variation of OLR and PW needs to be done to determine the consistency, 
sensitivity and change, which is useful as the initial identification of climate change in Indonesia. It 
due to OLR represented Earth’s radiation budget which is a critical component to understand the 
climate change [14] and precipitable water reflected water vapors as mainly parameter which is 
contributes at about 50% of the present-day global greenhouse effect [15].  

This paper aims to present the results of climate variability studies in the Indonesian monsoon 
region from the highest (intraseasonal) to the lowest (antartahunan) frequency. In addition, this study 
also aims to determine the consistency and sensitivity of both parameters in southern Indonesia, in 
relation to the monsoon phenomenon; i.e. the El Niño Southern Oscillation (ENSO), the 11-yr solar 
cycle, and the Pacific Decadal Oscillation (PDO). 

 
2. Data and Method 
All data in this study has a monthly period ranging from 1980-2011. To examine the periodicity and 
variance of data used, two methods based on the analysis of the frequency spectrum are deployed: 
wavelet and S-Transform. Both methods are used so that the resulting frequency spectrum can be 
interconnected. In addition, to know the variability of the data in more detail by performing the 
separation of the type of frequency from highest to lowest, the EMD method is performed. The EMD 
method can also generate data trends indicated by recent IMF results and can provide information on 
weakening and signaling through wave envelope over the data period. The EMD method is suitable for 
long-term non-stationary data as is the characteristic of OLR and PW data. The data and methods are 
described in more detail as follows. 

2.1. Data 
The main data used are PW data with monthly temporal resolution and 2.5-degree spatial resolution 
that can be downloaded freely via the following sites: http://www.esrl.noaa.gov/psd/data/gridded/data. 
ncep.reanalysis.derived.surface. html and OLR data with temporal resolution and 0.05 degree spatial 
resolution http://www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.html. PW data is available 
from 1974 to 2011 while OLR data is available from 1948 to 2011. As supporting data, this study 
utilize sun spot data obtained from Solar Influences Data Analysis Center (SIDC) 
http://sidc.oma.be/sunspot-data/ and SOI data Southern Oscillation Index (SOI) 
http://www.cpc.ncep.noaa.gov/data/indices/. The period of data used is data from January 1980 to 
December 2011 (30 years). 

2.2. Methods 
2.2.1 Morlet Wavelet 
Wavelet morlet is a wavelet type of complex exponential signal that is modulated with Gaussian 
window [14]. 
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Where 𝟁 is the wavelet value at non-dimensional time, while 𝟁0 is the wave number.  
 
2.2.2 Stockwell Transform Method 
The Stockwell transform (S-Transform) produces a representation of the relationship between time-
frequency in the time domain. This method is a combination of resolution settings based on frequency 
and spectral arrangement of real and imaginary values simultaneously [17].  
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Where 𝑝 is the parameter that determines the shape and value of 𝑓, whereas 𝟁 is the window function 
of S-transform (Gaussian function with window width depends on its frequency). 
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2.2.3 EMD Method 
The Empirical Mode Decomposition (EMD) principle is to decompose signals based on the direct 
extraction of signal energy associated with various intrinsic time scales [19]. This technique adaptively 
decomposes the non-stationary signal into a set of intrinsic oscillatory modes. Components called 
intrinsic mode functions (IMFs), allow instant component frequency calculations based on the Hilbert 
transform. Thus, it can potentially localize events in time and frequency. 

The starting point of EMD is by reviewing the signal oscillations at a very local level. Given the 
signal x(t), the effective EMD algorithm can be summarized as follows: (1) identifies all extracts x(t); 
(2) interpolate between minima and maxima so as to produce some envelope emin(t) and emax(t); (3) 
calculate the average m(t) = (emin(t) + emax(t))/2; (4) extracting detail d(t) = x(t) – m(t); (5) iteration on 
residual m(t). The sifting process includes the first iteration of steps 1 through 4 to obtain detailed d(t) 
signals, then reviewed as zero-mean according to the termination criteria. 

Once obtained, the detail is referred to as Intrisic Mode Function (IMF), the corresponding residual 
is calculated and followed by step 5. The extreme amount will decrease as it moves from one residual 
to the next, and the overall decomposition is fitted with a finite number of modes. A mode extraction 
is obtained when the shifting process is complete. Two conditions must be met: (1) the number of 
extremes and the number of zero-crossings must vary by a maximum of 1; (2) the average between the 
upper and lower limits of the envelope should be close to zero. Or with sifting process termination 
criteria: SD value = 0.2 or 0.3. 
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3. Result and Discussion 
Figure 1 shows areas in southern Indonesia that have seasonally different contrasts in precipitation 
and OLR patterns especially between the DJF (rainy season) and the JJA (dry season). This distinction 
in precipitation intensity and the seasonal wind direction is what causes the region to be referred to as 
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the region with monsoonal rain pattern in Indonesia. Periodicity of OLR and PW data in the region 
will be further investigated using wavelet analysis. 

The wavelet results in Figure 2a show the amplitude of OLR anomaly data varying from month to 
month with values between +2 and -2. Figures 2b-c show that the one-year signal is the dominant 
period of OLR in southern Indonesia. Other emerging signals are 2.5 yr, 5.3 yr and 10.6 yr. 

The annual signal is closely related to the monsoon phenomenon. Meanwhile, the 2.5 yr and 5.3 yr 
signals are influenced by the irregular cycles of ENSO [18, 21-23]. Signal strengths of 2-4 yr and 11 
yr on OLR data have the same power spectrum. In addition, for the 2.5 yr, signal strengthening 
occurred in 1994-2003 while for the 5.3 yr lasted between 1997-2000. For the 10.6 yr, no significant 
signal strengthening occurs in OLR data. For OLR data variance for 30 years there appears to be no 
threshold value (Figure 2d), which shows that OLR data has a high degree of regularity. It also 
proved that wavelet method has limitation to decompose OLR signal, so that we need other method 
which can decompose the non-stationary and non-linear signal data in more details and consistent, i.e. 
EMD (Empirical Mode Decomposition). It is because wavelets concept considering both low 
frequency as well as high frequency events simultaneously [19]. In the other hand, the limitation of 
wavelet morlet which is applied in the current research, depends on the characteristics of the data, also 
the data border distortion can affect the decomposition process at the two limits of the signal. 
However, wavelet morlet are the most commonly used for periodic data such as climatology and 
hydro-meteorology  [20].  

 

	
  
Figure 1. Location of monsoon region of Indonesia 
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Figure 2. Time series of (a), frequency spectrum (b), and variance (c) based on wavelet method of 
monthly climatology of OLR (1980-2011) 
 

Meanwhile, in the PW data (Figures 3 (b) and (c)), the dominant periods that emerged were annual, 
10.6 yr, 5.3 yr. The 10.6 yr signal strengthened in 1996-2011. For a 2.5 yr, the strongest signal was 
shown in 1994-2003. The wavelet results for PW data also show that the maximum value of PW after 
2010 shows a variance that exceeds its threshold value (Fig. 3 (d)). These findings show different 
realities to the OLR data.  
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Different results are exhibited by the S-Transform method, where OLR and PW both show the 
strongest signal about 5-6 years. This is evident from the five cycles in the OLR data and six cycles in 
the PW data for 30 years of observation shown by red (Figure 4). The frequencies of these five to six 
times were probably related to the ENSO phenomenon that has an irregular cycle between 2-5 years. 

Other signals that appear to have been represented by green and light blue colours, are seen as 
cycles that always appear throughout the year of observation. This shows the annual cycle associated 
with monsoon. The interesting point found through the S-Transform method is the dominant signal 
that appears in 2010 to 2011. Seen in Figure 4, both OLR and PW data show the same signal. 

Furthermore, to test the consistency of OLR and PW data, cross-correlation between OLR and PW 
period data were generated from wavelet and S-Transform method. The cross-correlation results 
describe that both OLR and PW have lag data period of 5 months. This shows the difference in phase 
calculation between S-Transform and wavelet against OLR and PW data is 5 months. In addition, for 
the same lag phase (5 months) it seems that the OLR and PW data consistently over 30 years have a 
correlation that is opposite (Figure 5). 

Figure 6 explains that by using the EMD method, more detailed signals can be seen in both OLR 
and PW data. The EMD results in the OLR data show 1-3 months (IMF 1), 6 months (IMF 2), 1.3 
years (IMF 3), 2.9 years (IMF 4), 4 years (IMF 5 and IMF 6), 6.4 years ( IMF 7), 10.6 years (IMF 8), 
15 years (IMF 9) and 30 years (IMF 10). In the PW data, periodic signals are 1-3 (IMF 1), 6 months 
(IMF 2), 1.3 years (IMF 3), 2.6 years (IMF 4), 3.75 years (IMF 5), 5 years (IMF 6), 7.5 years (IMF 7), 
10 years (IMF 8), 15 and 30 years (IMF 9 and 10). 
 

	
   	
  
Figure 4. Frequency spectrum based on S-Transform method of monthly climatology of OLR (left) 
and PW (right) data. 
 

	
   	
  
Figure 5. Cross-correlation of OLR (left) and PW (hand right) between frequancy spectrum of 
wavelet and S-Transform.  
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IMF 2 and 3 present the 6 monthly and annual signals associated with monsoon activity in southern 
Indonesia so as to impact the formation of Semi Annual Oscillation and Annual Oscillation. It also 
appears that signal strengthening for OLR data does not correspond consistently with PW data. 
Reinforcement of seasonal signals on OLR data generally occurs over a span of two consecutive years 
(1984-86, 1987-89, 1999-01) except in the period 1992-96 and 2004-08. Similarly, PW data, signal 
strengthening with the longest duration (8 years) only occurred in 1998-2006. In addition, strong 
signals took place in 1983-86, 1994-96, 2009-11. For the period 2009-2011, the facts show that there 
has been a wet in dry season in the Indonesian monsoon region even though in 2009 El Niño occurred 
in the Pacific Ocean. Some of the events that allegedly can be the cause of the a wet in dry season is 
because the MJO and tropical cyclone activity that has a higher frequency that is 30-96 days during 
that period [6].  

The Intraseasonal Cycle can be identified through both OLR and PW data through IMF 1 (Figure 
6). In fact, the increasing trend of convective activity and the increase in total humidity in atmospheric 
columns has occurred since 2000 to 2011. This can be demonstrated through the trend pattern of OLR 
and PW data through IMF 11 (Figure 7). 

While IMF 4 and IMF 5 are related to the occurrence of ENSO in the Pacific Ocean with a period 
of 2-4 years, similarly, IMF 6 represents ENSO which has a longer period of 6 years. The relationship 
between IMF 4 (2 years) and ENSO events is shown in Figures 8 and 9. Linear relationships can be 
identified in the case of strong El Niño in 1997. PW shows a very large value reduction yet at the same 
time the value of OLR has increased enormously. 

The IMF 8 (10 years) is suggested to be related to the 11th annual solar cycle. The 11-yr solar cycle 
has had an impact on climate change and weather in Europe by altering atmospheric circulation in the 
North Atlantic Oscillation and Arctic Oscillation indirectly by extending the hot anomalous memory 
that occurs in the ocean so as to generate a mutual response in the atmosphere [24-25]. It is also 
possible to explain how the 11yr solar cycle can affect the Asian winter monsoon [22]. In the Pacific 
Ocean, solar cycles can affect the formation of temperature hiatus conditions due to changes in ocean 
temperatures in the tropical Pacific [28]. 

Figure 7 showed IMF 8 (10 years), 9 (15 years), and 10 (30 years) can also be related to the ENSO 
phenomenon which has low frequency. It proves that ENSO also has lower frequency signals of 13 
and 32 years, hereinafter referred to as Multivariate ENSO Index (MEI) as a phenomenon that has a 
global impact on various climate anomalies, ENSO itself has multi-decadal evolution and dynamics 
[29-30]. However, there is another possibility of PDO occurrence that were shown by IMF 9 (15 
years) and IMF 10 (30 years) through OLR and PW data regarding to previous research that PDO has 
a period of 16.7 and 32.8 years [29]. Moreover, ENSO and PDO have mutual relations and can 
modulate each other [31].  

This is reinforced by the findings in this study which show that IMF 5 (3-4 years), 6 (5-6 years), 
and 9 (15 years) are mutually correspondent. Although the same is not shown by IMF 4 (2 years) and 
IMF 10 (30 years). Thus, the monsoon region in southern Indonesia is merely sensitive to MEI that 
has 15 years oscillations. Another opinion was expressed by Chelliah  which suggests that the 15-20 
years relate to another phenomenon called Tropical Multi-Decadal Mode which is evident in 
precipitation data during the DJF period in the western Pacific region (including Indonesia) [4]. 

Figure 9 shows that over a 12 year period, two PW wave cycles with peak cycles occurred in 
1989-1990 and 2003-2004. Compared with the 11-yr solar cycle data, it appears that at the time of 
maximum PW during that period, the sun reached the maximum of cycles that occurred in 1989-1992 
and 2000-2004. 
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Figure 6. IMF 1-5 based on EMD method for OLR (left) and PW (right) data 

 
 

 
Figure 7. IMF 6-11 based on EMD method for OLR (left) and PW (right) data  

 

years

years
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Figure 8.  IMF 4 OLR (a), PW (b) compared with SST Nino 3.4 (c)  

 
 

 
Figure 9.  PW and sunspot monthly data of 1980-2011. 

 

4. Conclusion 
The wavelet and S-Transform results show that the one-year signal is the dominant period of OLR in 
southern Indonesia. Other signals that appear are periods of 2, 5, and 10 years. In the wavelets, the 2, 
5, and 10 years signals in the OLR data have the same power spectrum. However, in the PW data, the 
dominant periods that emerged were 1, 10, 2 and 5 years, respectively. The wavelet results for the PW 
data also show that the maximum value of PW after 2010 shows an anomaly that exceeds the 
climatological average of the data for 30 years. The S-Transform results of OLR and PW data also 
clearly show signal strengthening after the 2010 period. While the EMD results show in detail the 1-3 
monthly cycles associated with MJO, 6 monthly and 1 yearly associated with monsoon activity, 2-3 

a)

b)

c)
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yearly related with ENSO short-term, 5-7 years ENSO long periods, 10 years that can be attributed 
ENSO (EMI) or the 11-yr solar cycle. Signals with lower frequencies of 15 and 30 years can be 
associated with EMI and PDO phenomena as they can affect each other. This study also found that 
OLR and PW have consistently for 30 years maintained correlations of the opposite shown from the 
results of the cross-correlation. 
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