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Abstract. The Boussinesq-type of equation is considered here as a model for describing
interfacial wave dynamics in a two-layer fluid system. The equation, which is derived under rigid-
lid assumption, has first order nonlinear term and dispersion term, and it holds for interfacial
wave with long wavelength and small amplitude, relative to depth. The second-order Mac-
Cormack scheme is implemented to solve this Boussinesq model. The numerical scheme is
validated by simulating solitary wave as well as monotonic bore. Finally, the evolution of
solitary wave propagating over a variable bathymetry with a shelf is examined.

1. Introduction
Internal wave are gravity wave that occur within ocean waters. Stratified ocean density support
the existence of these internal wave. Typical ocean density is low near the surface and increases
as depth increases. A layer of fluid with large density gradient is called a pycnocline. When
pycnocline layer is relatively thin, ocean density can be well-described as a two-layer fluid system.
In this case, internal wave propagate horizontally along the pycnocline and are called interfacial
wave. Propagation of these interfacial wave is often described by the Boussinesq model. This
model is a depth integrated two-layer model that incorporates weakly nonlinear and dispersive
effects. In the model formulation, assumption of shallow water and rigid-lid approximation are
applied.

Internal wave are ubiquitous. A comprehensive survey about this natural phenomena can be
found for instance in Gerkema [1]. Several theoretical models have been derived to describe the
dynamics of internal wave. To resemble the original situation in nature, Osborne and Burch [2],
Liu [3], and Helfrich [4] observed the dissipation and shoaling effect of internal wave by using
the Korteweg-de Vries (KdV) equation, whereas Holloway et al. [5] used the rotated-modified
extended KdV equation. Duda et al. [6] used the extended KdV to study the behaviour of two
kinds of internal wave: large amplitude solitary wave and internal tide. In the other hand, an
experimental and numerical study of internal wave generation was conducted by Lin and Liu
[7].

Tomasson and Melville [8], as well as Lynett and Liu [9], formulated a depth-integrated
model to examine internal wave dynamics in a two-layer fluid. The Boussinesq-type equations
were derived using the perturbation method of two small parameters representing the ratio
of amplitude to depth and depth to wavelength. This high order Boussinesq model was then
solved using the fourth-order predictor-corrector scheme. In this paper, the Boussinesq model of
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Lynett and Liu [9] is adopted and restricted to one dimension model of first order term. Then,
the finite difference Mac-Cormack method is implemented to solve these equations. Validation
of the scheme is presented via two test cases: simulation of solitary wave propagation and
monotonic bore. These test cases indicate that the proposed scheme can handle non-linearity
and dispersion with good balance. Further, deformation of a solitary wave when it propagates
over a shelf-topography is also presented.

2. Depth-averaged two-layer model
In this section, a direct derivation of one-dimensional Boussinesq equations will be discussed,
starting from the full governing equation. Consider a fluid domain with a thin pycnocline layer,
in such a way that it can be represented as a two-layer homogeneous fluid: the upper fluid layer
with density ρ1 and the lower fluid layer with density ρ2, as illustrated in Figure 1.

Figure 1. Sketch of a two-layer fluid system.

The undisturbed levels are: free surface z = h1, interface z = 0, and bottom topography
z = −h2(x). The interface displacement is denoted by η′ and the free surface displacement is
ξ′, with a positive sign represents an upward displacement. The two-layer fluid domains are
denoted as

Ω′1 = {
(
x′, z′

)
| η′ < z′ < ξ′ + h′1, x

′ ∈ R}, and

Ω′2 = {
(
x′, z′

)
| − h′2 < z′ < η′, x′ ∈ R}.

Density, pressure, and particle velocities in the upper layer are respectively represented by ρ′1,

p′1, and

(
u′1
w′1

)
, whereas in the lower layer by ρ′2, p

′
2, and

(
u′2
w′2

)
. Amplitude and wavelength of

the internal wave are denoted by a0 and l0, respectively.
To formulate the depth averaged model for interfacial wave, the normalized variables are

introduced first [9]. Let l0 and h0 be the horizontal and vertical length scales, respectively,
l0√
g∗h0

be the time scale and a0 be the scale of wave amplitude, therefore the non-dimensional

variables will take form as follow
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x =
x′

l0
, z =

z′

h0
, t =

t′
√
g∗h0
l0

,

η =
η′

a0
, ∆ρ =

∆ρ′

ρ0
, ξ =

ξ′

a0∆ρ
,

(h1, h2) =
(h′1, h

′
2)

h0
, (p1, p2) =

(p′1, p
′
2)

ρ0g∗a0
, (ρ1, ρ2) =

(ρ′1, ρ
′
2)

ρ0
,

(u1, u2) =
(u′1, u

′
2)

ε
√
g∗h0

, (w1, w2) =
(w′1, w

′
2)

ε
µ

√
g∗h0

,

where the parameters are

ρ0 = ρ′2, g∗ = g
∆ρ′

ρ0
, h0 =

h′1h
′
2

h′1 + h′2
. (1)

On those scalings, two small parameters were introduced as follow

ε =
a0
h0
, and µ =

h0
l0
, (2)

each represent nonlinearity and dispersion, respectively.
In dimensionless variables, the two-layer homogeneous fluid domains are Ω1 and Ω2, which

represent the upper and lower layer, respectively. The Euler equations for each fluid domain are
following

µ2
∂uj
∂x

+
∂wj
∂z

= 0 in Ωj , (3)

∂uj
∂t

+ εuj
∂uj
∂x

+
ε

µ2
wj
∂uj
∂z

= − 1

ρj

∂pj
∂x

in Ωj , (4)

ε
∂wj
∂t

+ ε2uj
∂wj
∂x

+
ε2

µ2
wj
∂wj
∂z

= − ε

ρj

∂pj
∂z

in Ωj , (5)

for j = 1, 2. In the above equations, indices j = 1 and j = 2 represent the upper and lower
layer, respectively.

Furthermore, several boundary conditions are applied. Along the free surface (z = h1+εξ∆ρ)
the total pressure vanishes

p1 = ρ1ξ, (6)

and the kinematic boundary condition along the surface reads

W = µ2∆ρ(ξt + εξxU). (7)

Meanwhile, along the interface (z = εη), the pressure is continuous

p2 = p1 + η, (8)

and the kinematic boundary condition read as

W = µ2(ηt + εηxU), (9)

w = µ2(ηt + εηxu), (10)
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or it can be written
W − µ2εηxU = w − µ2εηxu.

Finally, along the bottom (z = −h2), the impermeable boundary condition is applied

w = −µ2h2xu. (11)

To summarize, the governing equations for internal wave propagation in two-layer system fluids
are equations (3)-(5), with boundary conditions (7)-(11).

Internal wave appears within the ocean body. Although there are internal wave with large
amplitude within the ocean, the free surface above them is nearly undisturbed; only ripples may
appears at the surface [3]. One common approach is assuming the free surface to be zero at
all times, which is known as the rigid-lid assumption. Under the rigid-lid assumption, which
is simply ξ(x, t) = 0, the upper fluid is εη(x, t) < z < h1, x ∈ R and the lower layer fluid is
−h2 < z < εη, x ∈ R.

Next, the depth averaged velocity for the upper layer and lower layer are defined as

ū1(x, t) =
1

h1 − εη

h1∫
εη

u1dz, (12)

ū2(x, t) =
1

h2 + εη

εη∫
−h2

u2dz, (13)

respectively. Later, the above depth averaged formulations together with boundary conditions
will be used to derive the Boussinesq equations.

The following equation is obtained from the relation (13) and the lower layer boundary
conditions

((h2 + εη)ū2)x =
∂

∂x

εη∫
−h2

u2dz

⇔ (h2 + εη)xū2 + (h2 + εη)ū2x =

εη∫
−h2

u2xdz + u2|εη (εη)x + u2|−h2 h2x .

Under the shallow water assumption, the horizontal velocity is homogeneous over the fluid depth,
so u2(−h2, t) = ū2(x, t) = u2(εη, t), therefore the first term on the left hand side and the second
and third terms on the right hand side are cancelled out. Hence

(h2 + εη)ū2x =

εη∫
−h2

u2xdz.

Integrating the continuity equation for the lower layer (equation (3) for j = 2) over the depth
from z = −h2 to z = εη yields

εη∫
−h2

(
µ2
∂u2
∂x

+
∂w2

∂z

)
dz = 0

⇔ µ2(h2 + εη)ū2x + w2|εη − w2|−h2 = 0

⇔ ηt + ((h2 + εη)ū2)x = 0.
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The last relation is obtained after adopting boundary conditions (10) and (11).
Performing the analogue process for the upper layer, and using boundary conditions (7) and

(9) yield
ηt − ((h1 − εη)ū1)x = 0.

Let M denotes fluid discharge from the lower layer to the upper layer. Mass conservation for
each layer requires that M should be equal to the reverse discharge: from the upper layer to the
lower layer, which is expressed as follows

(h2 + εη)ū2 = M = −(h1 − εη)ū1, (14)

Then, the continuity equation expressed in depth averaged variables is

ηt +Mx = 0.

For the momentum equation, by assuming that density difference between layers is small,
i.e. O(µ4), the equation can be obtained by means of perturbation method [9]. The resulting
equation contains terms of successive order O(1), O(ε), O(ε2), · · · , as well as terms of O(µ2),
O(µ4), · · · . Keeping terms up to O(ε),O(µ2), and neglecting higher order terms, the depth
averaged model for interfacial wave are following

ηt +Mx = 0 (15)

Mt + aηx + b (MMx − (Mη)t) + cM2h2x

+d
(
(Mη2)t −M(Mη)x − ηMMx

)
+ eMxxt

+f

(
Mxth2x −

2

h2
Mth

2
2x + (Mth2x)x

)
= 0

(16)

where

a =

(
1

h1
+

1

h2

)−1
, b = ε

(
1

h1
− 1

h2

)
, c = −ε 1

h31
a,

d = ε2
(

1

h21
− 1

h1h2
+

1

h22

)
, e = µ2

h1h2
3

, f = −µ2a.

In further discussions, equations (15, 16) will be solved numerically. Then, various simulations
will be presented under Boussinesq assumption, i.e. the non-linearity and the dispersion are in
the same order O(ε) = O(µ2).

3. Mac-Cormack method
In this section a numerical scheme to solve the equations (15, 16) is formulated. Here the Mac-
Cormack scheme is implemented, which is a suitable scheme for solving hyperbolic problems [10].
The Mac-Cormack method is a finite difference second-order predictor-corrector scheme. Firstly,
note that the equation (16) contains term with mixed derivative. To handle this situation, a
new variable ϕ is introduced as follows

ϕ = M − bMη + dMη2 + eMxx + f

(
2h2xMx −

2

h2
h22xM + h2xxM

)
.

Written in the new variable ϕ, equation (16) becomes

ϕt +
(
a− dM2

)
ηx + (b− 2dη)MMx + cM2h2x = 0.
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Figure 2. Space domain discretization.

Let ∆t be the length of time step, and discrete time variable is denoted as tn = (n − 1)∆t,
n = 1, 2, · · · , Nt + 1, whereas ∆x is the length of space step, and discrete space variable is
denoted as xi = (i− 1)∆x, i = 1, 2, · · · , Nx+ 1, in the computational domain [0, L], see Figure
2. Notation ηnj represents the value of η at space grid j and time grid n, so do ϕnj and Mn

j .
The predictor step is a forward-time forward-space approximation,

ηn+1
i = ηni −

∆t

∆x

(
Mn
i+1 −Mn

i

)
(17)

ϕn+1
i = ϕni −

(
ai − di(Mn

i )2
)

∆t

∆x

(
ηni+1 − ηni

)
− ci∆t

∆x
(Mn

i )2h2xi

− (bi − 2diη
n
i ) ∆t

∆x
Mn
i

(
Mn
i+1 −Mn

i

)
.

(18)

The overlines indicate predicted values. In the end of each time-step, the predicted values Mn+1
i

for i = 2, 3, . . . , Nx can be obtained by solving DMn+1 = ϕn+1, where

D = g∗ + k∗ +
1

∆x2
e∗, (19)

g∗ =


g2 0 · · · 0
0 g3 · · · 0
...

...
. . .

...
0 · · · 0 gNx

 , k∗ =


−k2 k2 0 · · · 0

0 −k3 k3 · · · 0
...

...
. . .

...
...

0 · · · 0 −kNx−1 kNx−1
0 · · · 0 0 −kNx

 ,

e∗ =


−2e2 e2 0 · · · 0
e3 −2e3 e3 · · · 0
...

...
. . .

...
...

0 · · · eNx−1 −2eNx−1 eNx−1
0 · · · 0 eNx −2eNx

 ,

gi = 1− biηn+1
i + diη

n+1
i ηn+1

i − 2fi
h2
h22xi

+ fih2xxi , and

ki = 2fih2xi .

Meanwhile, the corrector step is the forward-time scheme with the average between the
backward-space of predicted-values at time n + 1 and the forward-space of real-values at time
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n,

ηn+1
i = ηni −

∆t

2∆x

[(
Mn
i+1 −Mn

i

)
+
(
Mn+1
i −Mn+1

i−1

)]
(20)

ϕn+1
i = ϕni −

(
ai − di(Mn

i )2
)

∆t

2∆x

[(
ηni+1 − ηni

)
+
(
ηn+1
i − ηn+1

i−1

)]
− (bi − 2diη

n
i ) ∆t

2∆x
Mn
i

[(
Mn
i+1 −Mn

i

)
+
(
Mn+1
i −Mn+1

i−1

)]
− ci∆t

∆x
(Mn

i )2h2xi .

(21)

The values of Mn+1
i for i = 2, 3, . . . , Nx can be obtained in the end of each time-step by solving

DMn+1 = ϕn+1, where

D = g∗ + k∗ +
1

∆x2
e∗, (22)

g∗ =


g2 0 · · · 0
0 g3 · · · 0
...

...
. . .

...
0 · · · 0 gNx

 , and

gi = 1− biηn+1
i + diη

n+1
i ηn+1

i − 2fi
h2
h22xi

+ fih2xxi .

Stencil of the numerical scheme above is illustrated in Figure 3. Note that both left and right
boundary condition is needed to perform this numerical scheme.

Figure 3. Stencil of Mac-Cormack Method.

4. Numerical simulation
To run the numerical simulation, as mentioned earlier, a left and right boundary condition is
needed. In this paper, hard-wall boundary conditions are adopted for both ends, written as
follow

ū1(0, t) = 0 and ū1(L, t) = 0,

ū2(0, t) = 0 and ū2(L, t) = 0,

for t > 0. Since (h2 + εη)ū2 = M = −(h1 − εη)ū1, the hard-wall boundary conditions imply

M(0, t) = 0 and M(L, t) = 0, ∀t > 0 (23)
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or in the discretized domain can be written as

Mn
1 = 0 and Mn

Nx+1 = 0, n = 1, 2, · · · , Nt.

Afterwards, apply the Lax-Wendroff method to the continuity equation at both end of the space
domain to get the boundary condition for η

ηn+1
1 = ηn1 −

∆t

2∆x
(Mn

2 −Mn
1 ) +

1

2

(
∆t

∆x

)2

(Mn
2 − 2Mn

1 +Mn
0 ) (24)

ηn+1
Nx+1 = ηnNx+1 −

∆t

2∆x

(
Mn
Nx+2 −Mn

Nx+1

)
+

1

2

(
∆t

∆x

)2 (
Mn
Nx+2 − 2Mn

Nx+1 +Mn
Nx

)
.

(25)

As illustrated in Figure 2, the point x0 and xNx+2 are outside the calculation domain. From
(23), the value of M0 can be obtained as an odd function interpolated from M1 and M2, or to
be explicit M0 = −M2. And the same thing holds for MNx+2. With these results, equations
(24, 25) can be written as

ηn+1
1 = ηn1 −

∆t

2∆x
Mn

2

ηn+1
Nx+1 = ηnNx+1 +

∆t

2∆x
Mn
Nx,

which are the boundary conditions for η as a result from the hard-wall boundary condition.

Figure 4. Solitary wave simulation using ε = µ2 = 0.01.

The numerical simulations will be conducted under Boussinesq assumption O(ε) = O(µ2).
Moreover, the higher terms such as O(ε2), O(εµ), O(µ3), etc. will be omitted. The first test
case is performed to check whether the numerical solution is consistent to the known analytical
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solution at constant depth. Two known analytical solutions are used for this test, a solitary
wave and a monotonic bore.

The solitary wave has a dimensionless form as follows

η(x, t) = sech2

(
x−mt

l

)
, (26)

where m = 1 +
ε(h2 − h1)

2h1h2
and l =

2h1h2√
3ε(h2 − h1)

. A solitary wave with small nonlinearity,

ε = 0.01, will be observed first. This simulation uses a constant depth h2 = 3 and the ratio of

the upper and lower layer depth
h2
h1

= 2. The domain is discretized by ∆x = 1 and ∆t = 0.01.

The analytic and numerical result are plotted simultaneously as it can be seen in Figure 4.
The figure shows that the numerical calculation is stable and consistent to its analytical solution
for a quite long time.

Figure 5. Monotonic bore simulation using ε = µ2 = 0.01.

A monotonic bore has the following dimensionless form

η(x, t) =
1

2

[
1 + tanh

(
x−mt

l

)]
, (27)

where m = 1 +

(
h22 − h21

)2
8
(
h32 + h31

) and l =

√
16µ2 (h2 + h1)

(
h32 + h31

)
3
(
h22 − h21

)2 . The simulation is conducted

on a constant depth h2(x) = 2.1 with the ratio between the upper and lower layers as
h2
h1

= 1.1.

First, the simulation is performed for ε = µ2 = 0.01 using ∆x = 0.25 and ∆t = 0.01. The
numerical result is stable and consistent to its analytical solution for eleven wavelengths of
propagation as shown in Figure 5.
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Figure 6. Monotonic bore using ε = µ2 = 0.2.

The second simulation is using larger parameter of nonlinearity, ε = 0.2. It was conducted
using ∆x = 1.2 and ∆t = 0.01, and yields result in Figure 6. Again, it is shown that the
simulated monotonic bore is in good agreement with the analytical bore.

Figure 7. Simulation of a solitary wave evolving a shelf using ε = µ2 = 0.1, ε = µ2 = 0.05, and
ε = µ2 = 0.01.

On the next test case, the behavior of a solitary wave that propagates over a shallower region
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will be examined, which is expected to give a shoaling effect. Here we take a topography which
has a smooth transition that connects two constant depths (calculated from the interface level):
100 m and 40 m [11]. The interface is located on 60 m under the sea level. Dimensionless

parameters correspond to the above physical setting are h1 =
8

5
, with the shelf topography is

h2o +
1

2
(h2o − h2e)

(
cos
(πx
L

)
− 1
)
,

where the upstream and downstream depths are h2o =
8

3
and h2f =

16

15
, respectively. Simulations

are conducted using several values of ε = µ2, i.e. 0.01, 0.05 and 0.1, and the results are plotted
in Figure 7. For the case of µ = ε2 = 0.01, which is a small number, the initial solitary wave
undergo the shoaling process which is almost linear. Simulation results of larger parameters
µ = ε2 clearly demonstrate the effect of nonlinearity and dispersion; as the wave get steeper by
nonlinearity, wave train appears due to dispersion, and hence the solitary wave develops into
a negative leading wave followed by a wave train. Even though here the first order Boussinesq
model is adopted, and solved using second-order Mac-Cormack method, the results are in good
agreement with Lynett and Liu [9].

5. Conclusion
The implementation of Mac-Cormack method to the Boussinesq equations gave us a stable
scheme. The scheme was validated by simulating the solitary wave solution that propagates
undisturbed in shape with constant velocity. This solitary wave conform the analytical solitary
wave. Another benchmark test was simulating the propagation of a monotonic bore. Simulations
results demonstrated that the scheme can handle non-linearity and dispersion with good balance.
Simulation of a solitary wave propagates over a topography with shelf displayed the shoaling
phenomena. For a solitary wave with somewhat large non-linearity ε and dispersion µ2

parameters, the wave undergo shoaling and dispersion effects, and the wave breaks down into a
series of wave.
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