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Abstract. Amine scrubbing is the state of the art technology for CO2 capture, and solvent 

selection can significantly reduce the capital and energy cost of the process. Higher energy 

requirement for aqueous amine based CO2 removal process is still a most important downside 

preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino 

acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. 

This work presents initial CO2 solubility study and important physical properties i.e. density of 

the studied solvent system. Previous work showed that non-aqueous system of potassium 

prolinate and ethanol has good absorption rates and requires lower energy for solvent 

regeneration. However, during regeneration, solvent loss issues were found due to lower 

boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system 

for enhancing the overall boiling point of the system. The good initial CO2 solubility and low 

density of studied solvent system offers several advantages as compared to conventional amine 

solutions. 

1. Introduction 

In chemical absorption processes, amines such as monoethanolamine (MEA), diethanolamine (DEA) 

and methyldiethanolamine (MDEA) are the most common choice as chemical solvents that have been 

used industrially for acid gas removal [1]. The main advantage of this technology based on chemical 

absorption of CO2 by aqueous amines is its great efficiency; more than 90% of low pressure CO2 can 

be captured because of the fast acid-base reaction. However, this process has not yet demonstrated to 

be suitable for the application to CO2 removing from large scale commercial power plants (up to 500 

ton CO2/h), due to energy required for absorbent regeneration [1]. Besides the regeneration energy, 

other disadvantages are large equipment size [2], solvent volatility [3], solvent toxicity [4], solvent 

degradation [5]-[7], and high equipment corrosion [8], [9]. In order to make more attractive 

implementation of the CCS technology to large scale fossil-fuelled power plants, considerable 

research efforts are undertaken from engineering and chemical point of view, to make the process 

more economical efficient as well as environmental safe. To achieve this objectives, the absorbent 

efficiency and its thermal and oxidative stability should be increased, as well as energy costs of the 

absorbent regeneration should be decreased while maintaining (or enhancing) the other attributes. 

To avoid the issues of solvent volatility, toxicity, degradation and corrosion, several researchers have 

come up with a new class of solvents named as amino acid salts (AASs) [10]-[21]. AASs are the salt 

form of natural amino acids. They are therefore formed by neutralizing an amino acid compound with 

an alkali metal hydroxide. Thus, the alkalinity of the amino group is increased, i.e. the amino acid 

reacts selectively with acid gases such as CO2. Due to their ionic nature, both AASs and their 
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absorption products are conveniently non-volatile [11], [22]. As reported by Eide-haugmo et al. [23], 

AASs have a high biodegradability and their toxicity is an order of magnitude lower than any of the 

other alkanolamines, piperazine (PZ) or ammonia. Moreover, Fischer observed that AASs such as 

potassium N, N-dimethylglycinate, taurate and sarcosinate demonstrated lower degradation rates and 

less volatile degradation product emissions in comparison to alkanolamines such as MEA and DEA 

[24]. However, it was recently pointed out that the regeneration energy demand is one of main 

research area where AASs might have to advance [25]. Evidently, there is a great need for more 

fundamental research into new chemical solvents. 

Earlier, alkanolamines were also used in non-aqueous solutions [26]. An example of this is the 

Sulfinol process using a mixture of diisopropylamine (DIPA), sulfolane (tetrahydrothiophene dioxide), 

and water. This process had shown the capability of removing carbonyl sulfide (COS) and mercaptans 

together with H2S and CO2 [26]. And recently, several researchers have investigated that non-aqueous 

amine/alcohol solvents offer various improvements such as low binding energy, low heat capacity and 

high cyclic loading, resulting in a significant decrement of regeneration energy demand of CO2 

absorbed solvents [27]-[29]. Lately, Shen et al. [30] investigated absorption rate of CO2 in non-

aqueous system of potassium prolinate/ethanol (ProK-EthOH) solution. It was also examined that the 

ProK-EthOH solvent showed faster absorption rate than aqueous ProK solvent and as well as lower 

regeneration temperature. However, solvent loss especially ethanol loss during regeneration of solvent 

was the major issue due to low boiling point of the ethanol need to be addressed for the future studies 

[30]. Therefore, in this work, ethylene glycol (EG) was mixed with ProK-EthOH solution, so as to 

increase the boiling point of the azeotropic mixture of EthOH and EG. Moreover, the data on 

absorption performance of non-aqueous AASs system is scarce in available literature. Here, this work 

is focused on evaluating the initial CO2 solubility study of the developed non-aqueous system and 

evaluating the density of the system. 

Knowledge of the physical property such as density of non-aqueous system of ProK-EthOH-EG is 

essential for process design of gas treating units [31]-[33]. Solution density is important for the mass 

transfer rate modeling of absorption and regeneration because these properties influence the values of 

the liquid side mass transfer coefficient [34], [35]. Therefore, in this study, physical properties were 

measured over the temperature range of 298.15 to 343.15 K and at ProK mass fractions of (0.05, 0.10, 

0.15, 0.20, 0.25 and 0.30) with the remaining solution containing equal mass fractions of EtOH and 

EG. In addition, initial CO2 solubility is investigated for all concentrations into the studied solvent at 5 

bar initial pressure. 

2. Experimental section 

2.1. Chemicals and solution preparation 

The chemicals such as l-proline (Pro), ethanol (EthOH) and ethylene glycol (EG) were provided by 

Merck Chemicals Germany and potassium hydroxide (KOH) was supplied by Aladdin Reagent China 

and were used as such. However, the gases such as carbon dioxide (CO2) and nitrogen (N2) were 

provided by Muscat gases. In order to prepare potassium prolinate/ethanol (ProK-EthOH) solutions, 

equimolar mixture of Pro and KOH was added into equal masses of EthOH and EG. All the chemicals 

were mixed at 400 rpm and atmospheric pressure using a magnetic stirrer for 2 to 3 hrs till a clear and 

uniform solution was formed. The weight measurements of the chemicals (Pro, KOH, EthOH and EG) 

were performed using an analytical balance (Mettler Toledo) with a precision of ± 0.1 mg. All the 

prepared solutions were preserved in a tightly closed glass container so as to minimize the exposure of 

air for any contamination. Six different concentrations (0.05, 0.10, 0.15, 0.20, 0.25 and 0.30) of ProK 

were prepared in EthOH-EG solution in terms of mass fraction. All physical properties were measured 

in a temperature range of 298.15 to 343.15 K, at every 5 K interval. 

2.2. CO2 absorption experiments 

In this study, initial CO2 solubility tests were performed in order to check the absorption capacity of 

the newly formulated system of ProK-EthOH-EG. For this purpose, a high pressure solubility cell was 

used. A brief description of this solubility cell was presented in our previous papers [20], [21]. CO2 
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solubility in ProK-EthOH-EG system were measured using a pressure drop technique [36] at 313.15 K. 

The method of CO2 loading calculation was described briefly in literature [21], [30], [36]. 

2.3. Density measurements 

The density of ProK-EthOH-EG solutions was measured at atmospheric pressure using a density meter 

(Anton Paar DMA 4500 M), with a repeatability of ± 5×10
-5

 g.cm
-3

 and temperature accuracy of ± 

0.01 K. The equipment works on the theory of oscillation U-tube method [37], [38]. Before any 

measurements, the cell of the density meter was extensively cleaned with ethanol and water of 

Millipore quality and dried with a built in air blower. The cleaning and drying procedure was done for 

the reliability and accuracy of the measured data. The equipment was calibrated for the whole 

measurement range with water of Millipore quality. In a similar way, the density of the ProK-EthOH-

EG solutions was measured. Each density measurement was replicated three times and the calculated 

uncertainty in the density and temperature data was ± 6×10
-5

 g.cm
-3

 and ± 0.02 K respectively. 

3. Results and discussion 

3.1. Initial CO2 solubility test 

In this study, initial solubility of ProK-EthOH-EG system was examined at 5 bar initial pressure and at 

313.15 K. The obtained solubility data was calculated in terms of CO2 loading which is mol of CO2 

per mol of solvent used and are presented in Table 1. It was observed from table that as the 

concentration of ProK in solution increases CO2 loading decreases. Because with the increase in 

concentration of ProK, the rate of number of CO2 absorbed in the solution is less than the rate of 

number of moles of overall solvent and thus causing the loading to decrease. A similar behaviour in 

CO2 loading data with increase in concentration of solvent can be observed in literature also [20], [21], 

[39], [40]. 

 

Table 1. Experimental initial CO2 solubility data in ProK-EthOH-EG solutions at 313.15K. 

Concentration of ProK in solvent (w) Pressure (bar) CO2 loading (mol CO2/mol of solvent) 

0.05 3.92 1.456 

0.10 3.71 1.310 

0.15 3.53 1.196 

0.20 3.40 1.079 

0.25 3.32 0.965 

0.30 3.24 0.871 

 

Table 2. Experimental density data of ProK-EthOH-EG solutions at 0.1 MPa. 

T/K density (ρ/g.cm
-3

) 

 ProK (w) 

 0.05  0.10 0.15 0.20 0.25 0.30 

298.15 1.3985 1.4025 1.4066 1.4115 1.4187 1.4225 

303.15 1.3972 1.4011 1.4051 1.4103 1.4161 1.4197 

308.15 1.3962 1.4003 1.4034 1.4095 1.4143 1.4185 

313.15 1.3968 1.4008 1.4038 1.4102 1.4149 1.4190 

318.15 1.3983 1.4029 1.4057 1.4123 1.4170 1.4203 

323.15 1.4021 1.4062 1.4095 1.4146 1.4208 1.4244 

328.15 1.4070 1.4102 1.4135 1.4185 1.4260 1.4299 

333.15 1.4109 1.4148 1.4173 1.4229 1.4299 1.4338 

338.15 1.4123 1.4176 1.4231 1.4268 1.4314 1.4355 

343.15 1.4131 1.4186 1.4242 1.4285 1.4321 1.4363 

 



4

1234567890 ‘’“”

2018 7th International Conference on Clean and Green Energy-ICCGE 2018 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 154 (2018) 012020  doi :10.1088/1755-1315/154/1/012020

 

 

 

 

 

 

3.2. Density 

The experimental density data of ProK-EthOH-EG solutions was measured at several mass fractions 

(0.05, 0.10, 0.15, 0.20, 0.25 and 0.30) and temperature ranging from 298.15 to 343.15 K. The 

measured density data are reported in Table 2 and the effect of concentration and temperature on 

density is shown in Fig. 1. It can be observed from Fig. 1 that density increases as the concentration of 

solvent increases isothermally, hence showing the effect of concentration. Because, as the 

concentration of ProK molecules increase in the solutions, the intermolecular interactions between 

ProK and EthOH-EG molecules might increase due to hydrogen bonding and Van der Waals 

dispersion forces between them, which in turns increases the density. However, density data decrease 

linearly with the rise in temperature of the solution at any constant concentration. Because at higher 

temperatures, the spaces between the molecules get increased resulting in the expansion of the solution 

volume and thus decreasing the density. Similar behaviour in the variation of the density data has been 

observed in literature also [37], [41]-[43]. 

 

Figure 1. Plot of experimental density versus temperature for several mass fractions of ProK-EthOH-

EG solutions; , 0.05; , 0.10; , 0.15; , 0.20; , 0.25, , 0.30. 

4. Conclusion 

Experimental density and initial CO2 solubility data of ProK-EthOH-EG solutions were investigated at 

several concentrations (0.05, 0.10, 0.15, 0.20, 0.25 and 0.30) and temperatures (298.15 to 343.15 K). 

The density data increase with increase in concentration of ProK in the solution, while, an opposite 

behavior was observed with the rise in temperature of the solution. CO2 solubility decreases with 

increase in concentration of ProK in the solution. The data obtained in this work could be useful for 

the designing of efficient CO2 absorption system. Additional research on the studied solvent is 

required in terms of reaction mechanism and absorption rate study for the proper understanding before 

it can be used on a commercial scale for CO2 removal processes. 
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