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Abstract. In the application of current airfield clearance standard, operation differences are 

neglected. As a result, this paper sets up a distributional pattern of flight paths at some airfield 

and new obstacle limitation standards on various security target levels. It interprets and fits the 

flight data into actual trajectory curves and applies BP neural network to build a prediction 

model of the spatial position of aircrafts. Based on this theory, the model is implemented in 

further statistical analyses of the original and simulation data collected in this airfield, which 

leads to the establishment of distribution rules of aircraft trajectory. This paper proposes a fresh 

method to set up an airfield obstacle free space and has important reference values to improve 

the administration of airfield obstacle free space. 

1. Introduction 

Airfield obstacle free space refers to the delimitation of a certain airspace near the airfield to protect 

safe transitions of aircraft. The height of buildings in this space is limited according to the obstacle 

free space regulation. The Civil Aeronautics Board proposes an obstacle removal solution according to 

flight procedures [1] while some researchers conduct obstacle free space assessment and obstruction 

management via geographic information system (GIS) [2-3]. Besides, International Civil Aviation 

Organization (ICAO) raises the concept of obstacle limitation surface [4] and a collision risk model is 

built to directly present airfield obstacle free space on the basis of probability [5-6]. Yet, the delineation 

of obstacle free space still follows the old approach in “Airfield Clearance Specification” which sets 

the scope of airfield obstacle free space and limit obstacle height based on airfield level. In other 

words, airfields of the same level, though located in different regions, share the same requirements 

concerning the scope of obstacle free space and obstacle height limitation. Delineating clearance space 

in this way is not specific enough and can lead to unnecessary restrictions. This paper attempts to put 

forward an approach to delineate airfield obstacle free space by running statistics of the operation 

trajectory of resident aircrafts so as to improve the precision of airfield obstacle free space.  

2. Acquisition of aircraft operating data 

2.1. The Principles of data interpretation 

In order to describe the attitude of the aircraft flight accurately, the body coordinate system is 

established. The angle between the X axis, which is along the longitudinal axis of the aircraft, and the 

horizontal line is the pitch angle θ; the angle between the forward direction of the wing and the wing 
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chord is the angle of attack α; the angle between the X axis and the North Pole of the Earth is the 

heading angle ψ, and so forth.  

These angle data as well as the real-time speed data of aircrafts are recorded in the flight data 

recorder. After the velocity V, refers to the velocity in vacuum, is decomposed into three velocities on 

X, Y, Z directions by angular relationship, the aircraft displacement of a very short time towards all 

directions is generated. Use the velocity integral method to obtain the accumulation of displacement 

relative to the initial position at a certain moment, which can be recognised as space coordinates. At 

this moment the coordinate origin is regarded as the starting point for the aircraft. The X axis takes the 

moving direction of the aircraft along the middle line of the runway as positive while the Y axis is 

perpendicular to the middle line of the runway. the Z axis is perpendicular to the XOY plane and the 

coordinates in X, Y and Z directions are obtained by the Equation 1: 
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In the aforesaid equations, β is the angle between the runway and the true north direction, i is the 

number of flight parameters. Then the X axis should be converted to the airport coordinate with the 

origin at the middle of finish line. 

2.2. Calculation and fitting of aircraft operation data 

Considering the continuous changes of aircraft attitude in the air, the missing data in the corresponding 

flight moment can be obtained by applying cubic spline interpolation on adjacent data. With the 

equations above, the trajectory of aircrafts recorded by flight parameters recorder can be obtained. 

Figure 1(a) is a flight path in take-off stage generated through the speed integral method. Figure 1(b) 

shows the distribution of aircraft positions of 22 flights obtained through velocity integral method. 

 
(a)                                                        (b) 

Fig 1. Flight path sketch. 

 

In Figure 1(b), the value of X coordinate ranges from -1700 to 20,000, that is, from the position 

where the aircraft starts to run to the boundary of the obstacle free space. The coordinates fitting of X 

and Z images are shown in Figure 2. 
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Fig 2. Movement and fitting situation of XOZ plane. 

 

With the above method, it can be concluded that the operation trajectory of a certain model of 

aircraft at a specific airfield is a comprehensive result that is caused by various factors such as weather, 

altitude and driving, and is in line with the actual operation of the airfield. 

3. Statistics and analysis of aircraft operational laws 

The next step is to perform statistical analysis on a large amount of data to reveal the distribution of 

aircraft trajectories. However, because of various restrictions, the operating parameters of aircrafts are 

always limited under specific conditions. In order to expand the statistical data and increase the 

reliability of statistical results, this paper uses the neural network method to simulate the position 

coordinates of aircraft based on existing data. 

3.1. Construction of supervised neural networks 

Supervised neural network is a multi-layer feed-forward network trained by the algorithm of backward 

propagation of errors[7]. The learning process includes two phases: forward propagation of signals and 

backward propagation of errors. It can advance the training process with real-time correction of errors 

and minimise the SSE of the network through a constant adjustment of the weights and enthalpies. In 

the construction of a supervised neural network, i refers to the number of input layer neurons, j hidden 

layer neurons, and k output layer neurons. The output is as follows: 
1 1,1 1 1tansig( )z IU x y                                            (2) 

2 2,1 1 2purelin( )B z LU z y                                        (3) 

Where, x is the input vector, IU1,1 and LU2,1 are the weight vectors, y is the offset, z is the 

intermediate variable, B is the output, tansig, purelin are the transfer functions used by the hidden 

layer and the output layer, respectively. 

3.2. Analysis of training results 

Although supervised neural network is widely used in information, automation and other fields, it is 

still necessary to optimize the solutions in a more targeted way by combining experience with actual 

conditions to solve the problem of this paper. In the actual simulation, this is realised by adjusting the 

number of neurons in the hidden layer j and the radial basis spreading rate spread. 

Take the training results of X and Z coordinates as an example. In Figure 3, on the left side is an 

aircraft motion image generated from measured flight data in the XOZ plane, while the right one is 

generated from training. The trends are basically identical. 
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Fig 3. Prediction of movement in XOZ plane. 

 

Figure 4 (a) is the comparison of the training results of BP and RBF networks, two kinds of typical 

supervised neural network, which shows that the former is better. Figure 4 (b) shows the regression 

analysis, in terms of the value of the correlation coefficient R corresponding to the regression of 

training set, validation set, test set, and overall regression. The R values of the four parts are all close 

to one, and the four fitting curves are located in the diagonal positions of their images respectively, 

indicating a good training condition. 

  

(a)                                                                                     (b) 

Fig 4. Analysis of Training Results. 

 

Due to the small volume of the original data, this paper adopts BP and RBF neural networks to 

train data and perform comparative analysis so as to determine the value of the Z coordinate 

corresponding to any X coordinate by their intrinsic correspondence. It makes the analysis and 

expansion of flight data via BP neural network become possible. 

4. The distribution rules of aircraft in obstacle-free space and its setting 

Using the method established above, this paper collects 68 flight records in some airfield, runs 

calculation with the speed integration method and simulation with BP neural network and as a result 

obtains the distribution of aircraft trajectories in the terminal obstacle free space. It then analyses the 

scope of the obstacle free space. 

4.1. Distribution analysis and parameter estimation 
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When X ranges from 0 to 20000, take 200 m as a section and calculates the distribution of Z values. 

The typical distribution histograms are as follows: 

  

Fig 5. Distribution of Z for different X. 

 

Based on the analysis of Figure 5 and the actual situation in flight, assume the longitudinal offset 

conforms to an extreme type I distribution, the distribution equation is: 

 
F( , , ) exp{ exp( )},
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x a b x

a


                                   (4) 

Use the maximum-likelihood method [8]to estimate the parameters a, b of the I-type extreme value 

distribution. First, construct a general likelihood function of the extreme value distribution: 
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According to the maximum-likelihood method, set: 
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In the I-type extreme value distribution: 
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4.2. Distribution test method  

Assume that the longitudinal deviation agrees with the extreme I-type distribution and estimate its 

parameters, then adopt the Lilliefors test for verification[9]. The basic principle is: 

(1) Hypothesis H0: the empirical distribution function Sn (X) of standardized samples follows the 

theoretical cumulative distribution function φ (X). 

(2) Rearrange subsamples according to their values from the smallest to the largest, denote as Xi. 

(3) Determine the maximum deviation Dn of the empirical distribution function from the theoretical 

cumulative distribution function. 
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   
1  

  n n i
i nx

D sup S x φ x max δ                                  (9) 

(4) The given significant level α, look up the maximum allowable deviation Dn,a of the critical 

value table of the Lilliefors test. If Dn,a > Dn, accept hypothesis H0. Otherwise, reject hypothesis H0 for 

it indicates the distribution function of the sample does not conform to this distribution type. Therefore, 

the distribution function must be assumed separately. 

4.3. Statistics of aircraft altitude in obstacle-free space 

The mean values Z , standard deviations σz of the Z coordinates corresponding to different X 

coordinates, the extreme value distribution parameters ̂ , b̂  corresponding to the Z coordinate array, 

and the values under different confidence values corresponding to the test results and Z coordinates 

are shown in Table 1. 

Table 1. Statistics of Z for different X. 

Note: α = 5×10-9 is the ICAO safety standard adopted for Civil Aviation of China[10]. 

4.4. Statistics-based settings of obstacle free space  

Confidence intervals in Table 1 reflect the possibility of an aircraft appearing in a certain height range. 

It can be considered as a different safety target which can be adjusted according to actual demands and 

can be used to calculate the corresponding height range. The height limitation is shown in Figure 6(a) 

where safety targets correspond to the three curves. In theory, the closer the obstacle is to the limit 

curve, the higher the risk coefficient is, that is, the area has a lighter to darker gradient. Figure 6(b) is 

the corresponding plane range: 

 

      (a)                                                                          (b) 

Fig 6. Map of airport clearance in XOZ and XOY. 
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1000 35.58 5.63 4.15 38.14 1 31.80 33.58 25.89 

1600 66.18 5.58 4.17 68.67 1 62.30 64.10 56.37 

2200 95.49 4.89 3.77 97.65 1 91.90 93.52 86.54 

2800 123.94 5.81 4.66 126.51 1 119.39 121.40 112.76 

3400 156.46 6.80 5.47 159.52 1 151.17 153.52 143.39 

4000 194.54 9.60 7.60 199.07 1 187.46 190.73 176.64 

4600 227.36 10.68 8.32 232.21 1 219.51 223.08 207.67 

5200 271.11 10.83 9.19 276.19 1 262.16 266.11 249.08 

5800 306.26 12.98 10.11 312.11 1 296.67 301.01 282.28 

6400 340.57 14.65 11.25 346.87 1 329.69 334.52 313.67 

b̂ â
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Combine the plane range with the height limitation to generate the limitation criteria of obstacle 

free space for different safety goals of the airfield, as shown in the following figure: 

 
Fig 7. Clearance limited plane when α = 10-9. 

 

The standard maps above can also be used for querying, that is, through the surface, the height limit 

of obstacles corresponding to different safety targets can be determined at any point in the airfield 

coordinate system. Similarly, it is possible to set obstacle limitations for specific airfield and manage 

obstacle in the terminal obstacle free space with the ideas and methods set forth in this paper. 

5. Conclusion 

This paper adopts velocity integral method to analyse airborne flight parameters. Based on the 

acquired spatial position data of aircrafts, BP neural network is used to construct the prediction model 

of aircraft spatial position. After processing the flight parameters of some airfield, it provides obstacle 

limitation standards under different security objectives. This paper presents a method for delineating 

the obstacle-free space built on the characteristics of aircraft operation in airfield from the aspects of 

data acquisition, simulation analysis, data statistics and delineation of obstacle-free space, as well as a 

new perspective for managing airfield obstacle-free space. 
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