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Abstract. The experimental research presented in this paper investigates the mechanical 

behaviour of commercial metal connections in three-ply Chinese-manufactured cross-laminated 

timber (CLT) panels. Monotonic and cyclic loading tests were conducted at Tongji University 

on angle bracket and joints with inclined self-tapping screws. According to the standard EN 

12512, the force-displacement curves are exploited to assess the mechanical properties of the 

connections such as the strength capacity, yielding point, ductility and equivalent damping ratios. 

From the test results, the main load-carrying direction of the angle bracket is shear direction but 

the connection exhibits more ductile and dissipative behaviour in tension direction. In general, 

screwed joints demonstrate relatively brittle behaviour except in the case of shear wall-to-wall 

connection. Based on the capacity-based design principles, the experimental results and the 

failure modes are discussed to propose some design suggestions. 

1.  Introduction 

Cross-laminated timber (CLT) is gaining a growing popularity worldwide for its broad application in 

building construction. On account of diverse advantages in terms of structural strength, modularization 

and environmental attributes, the new engineered wood product represents a viable alternative to 

conventional construction materials such as concrete, steel and masonry.  

CLT panels behave mainly in linear-elastic range by reason of high in-plane rigidity and stiffness [1]. 

In accordance to the capacity-based design, the overall performance and stability of the structure depend 

on the ductile joints assembling the CLT panels such as wall-to-wall and wall-to-floor connections [2-4]. 

In CLT structures, the metal connections are indeed key components in regards of the seismic behaviour 

as they resist the lateral loads but also concentrate most of the deformation and energy dissipation of the 

building [5]. Nevertheless, the determination of fastening capacity in CLT is complex and more difficult 

to predict than in traditional timber materials. The estimation by means of simplified analytical models 

provided in design codes may significantly differ from actual mechanical properties values. Therefore, 

an experimental investigation on connections between CLT panels is essential for a reliable evaluation 

of the mechanical behaviour.  

This article focused more particularly on the structural behaviour of the wall-to-wall and wall-to-

floor joints adopted for the Chinese project Otto Cafe in Ninghai which used entirely CLT panels as 

structural elements. The connections were subjected to both monotonic and cyclic loading tests to 

evaluate essential mechanical properties for structural and seismic characterization of CLT structures. 

Finally, design suggestions were proposed for a better mechanical performance of the connections. 
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2.  Experimental program  

The CLT panels were manufactured in China from Northern Hemlock wood material. The panels of 

mean density ρm=400 kg/m3 were composed of three layers of 35 mm thick with a total thickness of 105 

mm. Each connection configuration was subjected to one monotonic and three cyclic loading tests 

according to the European standard EN 12512 [6]. In total, 24 tests were conducted, including 6 

monotonic and 18 cyclic tests.  

2.1.  Test setup and protocol 

The monotonic tests were carried out under displacement control at a constant slip rate of 0.05 mm/s. 

The tests were stopped when a load reduction of 80% was reached after maximum load. The input 

displacement for cyclic tests followed the procedure prescribed by EN 12512 (Figure 1a). The 

displacement rate varied from 0.3 to 0.6 mm/s depending on the yielding displacement obtained from 

the monotonic test as shown in Figure 1b. For all shear tests, a reversed cyclic procedure was applied 

whereas all tension tests were subjected to a non-reversed cyclic loading due to restrained movement in 

compression direction. The testing machine was a hydraulic actuator POPWILL vertically installed on 

a steel frame to apply load. Force-displacement curves were measured through the load cell located 

between the actuator and the specimen. One panel was anchored to a concrete base reaction ground with 

two steel tube profiles while the other panel was lifted by the actuator. Meanwhile, two additional 

displacement transducers (LVDT) were installed at both sides of each panel during the connection test 

to measure the global displacement and the relative slip between the two panels.  

 

     
Figure 1. Procedure of EN 12512 for cyclic testing: (a) input displacements; (b) definition of yielding 

point; (c) definition of equivalent damping ratio for half-cycle. 

2.2.  Test configurations 

Three commercial connections of Rothoblaas were investigated in both tension and shear directions. 

Table 1 reports the different test configurations and specimens geometry. The angle bracket TTF200 

was fixated to panels with 30 LBS screws 5x50 mm per shear plane. For screwed joints, a pair of fully 

threaded self-tapping screws was inserted in CLT with an angle of 45° with respect to the grain direction. 

The test specimens reproduced as accurately as possible the on-site geometry through non-symmetric 

configuration and similar number of fasteners.  

3.  Experimental results and discussion 

The experimental results were processed in accordance to the provisions of EN 12512. The backbone 

curve was defined as the envelope curve connecting the points of maximum displacement per cycle. For 

reversed cyclic tests, the mechanical properties were assessed by analysing both sides of hysteretic loops. 

Table 2 displays the experimental values obtained from both the monotonic and the cyclic tests of each 

connection configuration. Mean values were calculated based on the three cyclic tests. Fmax and Δmax 

refer to the maximum load and slip; Fu and Δu represent the ultimate load and slip; Fy and Δy indicate 

the yielding load and slip; Kser and Kpl denote the initial and plastic stiffnesses. Moreover, a ductility 

class (low/medium/high) was assigned depending on the ductility ratio D taken as the ratio between the 

ultimate slip and the yielding slip [7]. ΔF1-3 is the impairment strength defined as the percentage 

difference ratio between the maximum loads of 1st and 3rd cycle backbones. Energy dissipation capacity 

was quantified by the total dissipated energy Ed,total and the equivalent damping ratios νeq(1st) and νeq(3rd) 

of 1st and 3rd cycles at maximum slip loop as defined in Figure 1c.  

(a) (b) (c) 
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Table 1. Test configurations and specimens geometry. 
Conf. 

no. 

Loading 

direction 
Test configuration Geometry Joint type 

Wall-to-floor connections 

1-T Tension 

 

 
 

Angle bracket: 
 

 
 

Fasteners: 

 

Angle bracket TTF 

200x71x71x3mm 

Fasteners: 

30+30 Screws  

LBS φ5x50 mm 

 

1-S Shear 

 

 
 

2-T Tension 

 

 
 

 

Crossed self-

tapping screws 

2 VGZ φ7x140 mm 

 

2-S Shear 

 

 
 

Wall-to-wall connections 

3-T Tension 

 

 
 

 

Simple-butt joint 

with self-tapping 

screws 

2 VGS φ11x100 

mm 

3-S Shear 
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Table 2. Experimental mechanical properties for monotonic (M) and mean values for cyclic (C) tests. 

Test 
1-T 1-S 2-T 2-S 3-T 3-S 

M C M C M C M C M C M C 

Fmax (kN) 41.77 41.56 57.67 54.71 11.46 12.84 11.09 11.74 9.75 11.39 9.93 12.76 

Δmax (mm) 40.85 40.16 31.02 26.27 2.75 3.04 14.08 15.53 3.61 4.03 25.37 38.68 

Fu (kN) 33.42 33.27 46.14 43.77 9.17 10.27 8.88 9.49 7.8 9.11 7.94 10.21 

Δu (mm) 47.93 51.40 35.67 38.85 5.32 5.76 17.6 20.04 5.25 6.24 52.52 57.01 

Fy (kN) 22.50 18.51 46.09 41.42 10.80 12.09 10.26 8.93 7.78 9.77 7.37 6.98 

Δy (mm) 5.73 3.82 11.08 9.20 2.02 2.10 8.68 5.16 1.39 1.85 4.67 3.64 

Kser (kN/mm) 4.76 4.44 4.38 4.71 5.55 5.98 1.24 1.89 5.42 5.31 1.61 1.96 

Kpl (kN/mm) 0.68 1.04 0.74 0.82 0.92 0.98 0.21 0.33 0.90 0.88 0.13 0.33 

Ductility class H H L M L L L M L L H H 

D (-) 8.36 13.56 3.22 4.54 2.63 2.76 2.03 4.54 3.78 3.44 11.26 16.12 

ΔF1-3 (%)  13.39  6.28  4.35  33.38  4.55  13.19 

νeq(1st) (%)  22.26  7.51  7.42  11.30  9.65  15.73 

νeq(3rd) (%)  14.80  5.69  4.90  10.46  4.94  6.42 

Ed,total  (J)  7345  1456  205  632  158  2061 

3.1.  Tests of angle brackets for wall-to-floor joints 

The angle bracket TTF200 exhibited different behaviour in the two loading directions. For instance, the 

connection was found to be more ductile and dissipative in axial direction, proven by a five times higher 

amount of energy dissipated and an equivalent damping ratio ranging from 14.8 to 22.36% in tension 

direction as opposed to 5.69-7.51% in shear direction. 

In tension direction, the failure mode was the high plasticization of the angle bracket’s steel plate 

which induced a combination of screw withdrawal in the floor panel and yielding at level of the screws 

head, particularly the screws closest to the base plate (Figure 2a). Nevertheless, the screws inserted in 

the floor panel were pulled out before that the screws in the wall panels started to deform. The energy 

dissipation could be even higher in case of simultaneous ductile shear deformation of the screws attached 

to the wall panel. Moreover, it is suggested to take into account the deformability of the steel plate in 

design rules instead of only considering the contribution of the fasteners. 

In shear direction, the collapse of the connection occurred in CLT panel due to the block shear of the 

wood (Figure 2b). This brittle failure is illustrated by a sudden drop of resistance (Figure 3b). The 

phenomenon occurred even earlier in the case that the screws subjected to highest shear stress were 

located near a seam. Due to an excessive number of screws per shear plane inserted in the panels, the 

strength resistance of the group of fasteners was too high to achieve its full yielding capacity. Instead, 

brittle components (CLT panels) were seriously damaged by cracks and possible delamination.  

  

  
Figure 2. Typical failure modes of angle brackets (a) under tension and (b) under shear   

(a) (b) 
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Figure 3. Monotonic load-slip curve and typical hysteretic curves of angle bracket (a) under tension 

and (b) under shear. 

3.2.  Tests of crossed self-tapping screws for wall-to-floor joints 

The crossed self-tapping screws were initially installed during the project by means of resisting wall 

uplift to replace the function of hold-downs. For inclined screws, withdrawal component seemed to 

dominate the overall joint behaviour. The performance of the screwed joints was found to be poorer if 

the screws were located in proximity to a seam due to possible voids between the wood boards. 

The axially loaded self-tapping screws had higher strength resistance and stiffness compared to 

laterally loaded self-tapping screws. However, the behaviour was very brittle as proved by the average 

ductility ratio inferior to 3. The connection was characterized by a high stiffness but also an ultimate 

load at very low displacements (Figure 5a). The typical failure mode was the withdrawal of the screws 

with possible slight head pull-through (Figure 4a). The screws suffered few deformations, resulting in 

very low equivalent damping ratio and energy dissipation. 

In shear direction, the connection under monotonic loading demonstrated very low stiffness and poor 

ductility. However, the cyclic behaviour was found to be relatively better through higher stiffness and 

earlier yielding displacement. Since the connection collapsed after that the screws deformed until 

breakage, the laterally-loaded screws achieved failure at higher displacements than the axially-loaded 

screws, although the strength degradation was significant with 33% reduction of strength (Figure 4b). 

The screw failure and the wood crushing are two ductile mechanisms which allowed to achieve a 

ductility ratio of over 4 and a damping ratio for 3rd cycle more than two times higher compared to the 

case of tension load. The shear performance could be enhanced if the screws had larger diameter.  

 

  
Figure 4. Typical failure modes of self-tapping screws (a) under tension and 

(b) under shear. 

 

1-T 

(a) (b) 

1-S 

(a) (b) 
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Figure 5. Monotonic load-slip curve and typical hysteretic curves of crossed self-tapping screws (a) 

under tension and (b) under shear. 

3.3.  Tests of simple butt joints with crossed screws for wall-to-wall joints 

Unlike the traditional in-plane shear connections between CLT panels, the simple butt joint requires no 

additional CLT panel machining. The function as a shear connection was justified by a good 

performance in shear direction. The experimental results demonstrated a high ductility ratio of over 16 

since failure occurred at very high displacements under cyclic loads. The ductile failure was obtained 

through consequent wood crushing along the screws and yielding of the screws under shear, resulting 

in high energy dissipation and equivalent viscous damping (Figure 6b).  

In tension, the connection was found to be less performant than expected. The stiffness was high but 

the load-carrying resistance was lower in axial direction. Besides, the connection exhibited low ductility 

behaviour with early stage brittle failure at very low displacements. The failure mechanism was the 

withdrawal of the screw followed by a wood tear-off (Figure 6a). This rupture was caused by the non-

respect of the minimum spacing between the screw and the panel edge. Consequently, it is suggested to 

use longer self-tapping screws in order to better anchor the screws into the panel.  

 

  

Figure 6. Typical failure modes of simple butt joint with screws (a) under tension and (b) under shear. 

 

  

Figure 7. Monotonic load-slip curve and typical hysteretic curves of simple butt joint with self-

tapping screws (a) under tension and (b) under shear. 

 

(a) (b) 

 

2-T 

2-S 

3-T 3-S 

(a)  

 (b) (a) 

(b) 
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4.  Conclusion 

This paper presented the main results of the experimental research on the mechanical behaviour of wall-

to-wall and wall-to-floor connections between Chinese-manufactured CLT panels. Monotonic and 

cyclic tests were carried out on angle bracket and screwed joints. The experimental study allowed to 

determine the failure mechanisms and reliable estimates of essential properties for CLT design.  

From the test results, the angle bracket had better strength capacity in shear direction but the failure 

was found to be brittle with early stage delamination in CLT since plasticization of the fasteners was 

not achieved. In tension, the angle brackets exhibited relatively good resistance but also high energy 

dissipation, allowing its response to be classified as highly ductile.  

In general, diagonally placed screws were found to be less performant than typical connections with 

relatively brittle behaviour except when used as shear wall-to-wall connection. Provided that the spacing 

requirements were respected, significantly higher stiffness and strength capacity were found for axially 

loaded inclined self-tapping screws while significantly higher ductility was recorded in shear direction. 

For screwed joints, poorer performance was observed in the case that the self-tapping screws were 

located close to a board seam.  

Based on the experimental study, design suggestions were given in order to prevent any brittle failure 

and to improve the mechanical performance of the connections. Further research could be done on the 

optimized number of fasteners for angle bracket as well as the appropriate angle between the screw axis 

and the grain direction for screwed joints.  
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