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Abstract. As an important supplement and development of mesh method numerical calculation, 

meshfree method is a kind of new numerical algorithm in last decade. Point interpolation 

method(PIM), as a simple and efficient meshfree method, avoids the mesh generation and has 

obtained many good results in the field of computational mechanics. This paper devotes PIM to 

magnetotelluric three-dimensional forward modeling, introduces the approximate principle of 

PIM in detail, and deduces the discrete system matrix expression which corresponding to the 

magnetotelluric three-dimensional variational problem by combining the Galerkin method and 

the gauss integral formula, then the boundary conditions of loading technique is briefly 

introduced. The effectiveness of three-dimensional PIM is verified by the numerical 

calculation of several models.  

1. Introduction 

Mesh method such as integral equation method(IEM)[1-2], finite difference method(FDM)[3-4] and finite 

element method(FEM)[5-8] are usually used for magnetotelluric three-dimensional forward. They have 

their own advantages and disadvantages respectively: Calculation process of FDM seem directly, but it 

can not handle complex geophysical models; the split and quadrature process of IEM only in abnormal 

body domain, hence IEM does not involve complex issues of absorbing boundary like differential 

method, has the features of efficiency and convenience in three-dimensional electromagnetic 

numerical simulation, however the same as FDM, it can not cope with calculation of complex 

subsurface physical properties and boundaries models. FEM is suitable for the calculation of complex 

distribution of physical properties and boundary shapes, its biggest flaw is that when solving complex 

models mesh generation appears difficulty. Meshfree method[9] as a complement and development for 

FEM which emerged in the field of computational mechanics in last decade is a new class of 

numerical algorithms, its physical properties is loaded on the gauss points which only related with 

coordinate location, so it can adapt the calculation of complex model under the rules of distribution 

node. Element-free Galerkin method(EFGM)and point interpolation method(PIM) as two kinds of 

mature global weak-form meshfree method have been successfully applied to two-dimensional 

forward modelling of seismic wave field[10], radar electromagnetic field[11] and MT field[12-14]. The 

results showed global weak-form meshfree method have the advantages of high precision and 

convenient model loading. However, PIM applied to magnetotelluric three-dimensional forward has 

not been reported. 

This paper devotes PIM to MT three-dimensional forward, introduces the shape function 

constructing process of three-dimensional PIM, derives the overall matrix expression of PIM 

corresponding to MT three-dimensional variational problem, briefly describe the three-dimensional 
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gauss integration technology containing background grid, finally the effectiveness of PIM is verified 

through numerical calculation of several models. 

2. MT three-dimensional variational problem 

Assuming in Cartesian coordinate system, origin point locates at the surface of earth, which Z axis 

points down, X axis points the East and Y axis points the North. Solution domain V  is a hexahedron 

area with ABCD and EFGH as clockwise coding in the upper surface u  and lower surface d  

respectively. e  is the boundary of surface and air(Fig 1). 

B

A

C

D

E

F G

H

x

y

z

u

d

e

V

 
Figure 1 MT three-dimensional model 

When the earth electrical structure is three-dimensional, the following variational problem is 

satisfied[8] 
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  is angular frequency,   is permeability,   is permittivity and   is conductivity. 

3. MT three-dimensional variational problem solved by meshfree method 

3.1 support domain 

Shape function of PIM is constructed by the nodes which locates in support domain. Support domain 

is an artificially drawn area, its concept is similar to element in FEM. Hexahedron and sphere are 

commonly shape of support domain. Any gauss point 
QΧ  , its support domain size d  is 

determined by  

(2)cd d＝  

Where   is the support domain dimensionless size, the accuracy and efficiency of meshfree 

method reduces with increasing support domain dimensionless size  , the optimal   value is 1.0 

to 1.2 for MT forward[12], cd
 

is the nodal spacing near the point 
QΧ  

which could be determined by 
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Where B  is the area of the estimated support domain, n  is the number of nodes covered by the 

domain with the dimension of B . When nodes uniformly distribute, cd
 

could be defined as nodal 

spacing. In this paper, hexahedron support domain is adopted, the support domain sizes of x direction, 

y direction and z direction are following 
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where cxd ,
cyd and czd

 
are the nodal spacing of x, y and z direction respectively. x  

, 
y  

and 

z  
are the corresponding support domain dimensionless size. For convenience the paper sets 

= 0= = .= 1y zx    , in this case , the support domain size equals the element in FEM. 

3.2 Construction of shape functions in PIM 

Consider a continuous function ( )u X  defined in a domain Ω, which is represented by a set of field 

nodes. The ( )u X  at a point of interest X  is approximated in the form of 

     
1

T (5)h

j

m

j

ju p a


 　 X X p X a  

where ( )p X  is three-dimensional polynomial basis function in the space coordinates 

T [ , , ]x y zX , a  is the coefficient, and m is the number of monomials for ( )p X  which is built 

by Pascal's triangles, its linear basis functions is given by 

   T 1 x y z xy xz yz xyzp X  

Equation (5) can be written in the following matrix form 

(6)U Pa  

where 
3

T
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T

1 2{ }na aa aa = ，the expansion of P  is Equation (7) 
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Because of the number of nodes and basis functions are always equal ( 8m n  ) in PIM, 

Equation (7) is hence a square matrix form, coefficient a  can be obtained through matrix inverse 

operation 

1 (8)
a = P U  

Substituting Equation (8) back into Equation (5) 

   T T1 ( (9))
n

h

i i

i

u u  X U XPp X U  
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where 
T ( )X  is a vector of shape functions defined by PIM  

          T T

1 2

1
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Because of the PIM shape function is of polynomial form, the derivatives of the shape functions 

can be easily obtained like Equation (11)  
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3.3 Construction of discrete systems equations in meshfree method 

Magnitude xE ,
yE , zE  as three components of magnitude E  in the calculation point could be 

described with the form of shape function multiplied field value of nodes as follow 
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Where    is shape function matrix constructed by PIM, n  is the number of nodes, and 

xE ,
yE , zE  are nodes vector in support domain, Equation (13) is got by substituting Equation (12) 

into Equation (1) 
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Equation (1) can finally represent the form of Equation (14) through Equation (13) 
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Equation (14) is MT three-dimensional systems equation constructed by PIM. The expression 

of K contain quadrature in solving domian V and its boundary  , it could be solved by Gauss 

quadrature. For example, the elements locate in the upper left corner of 1K  and 2K , their 

quadrature could be represented as the sum of unit integral as follow. 
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where cn
 

and cn   
are, respectively, the total number of background grid and boundary grid. 

gn
 

and 
gn   

are, respectively, the total number of Gauss points in the quadrature domain and the 

boundary of quadrature domain. 
D

QiJ
 

and 
B

QiJ  are the corresponding Jacobian matrices, i  
is the 

Gauss weighting factor for Gauss point
QiX . 

Boundary conditions need to be loaded before solving linear equations 0KU , although 

boundary conditions of PIM can be loaded directly, program design seems more troublesome, 

therefore, this paper uses penalty function method to load boundary conditions, diagonal elements 
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IIK  in the stiffness matrix turns to IIK ,   is the penalty coefficient, its value can be 
4 1010 ~10 , 

then using the E  value of the boundary to replace the right side zero vector of the equation.  

4. Numerical calculation 

In order to verifies the effectiveness of PIM algorithm, several numerical models are calculated. 

Model 1 is three-layer medium model: the resistivity of first layer 1 500Ω mρ   , layer thickness is 

1km. The resistivity of second layer 2 2000Ω mρ   , layer thickness is 3km. The resistivity of third 

layer 3 100Ω mρ   , layer thickness is 2.5km, air layer thickness is 500m. Nodes are equally spaced 

in solving domain, total the number of (11×11×71) nodes and (10×10×70) background grids, node 

spacing is 100m . Model 2 is hexahedral low resistance model, background resistivity is 

1000Ω m ,abnormal body resistivity is 100Ω m , length, width, height of abnormal body is 400m, 

depth of abnormal body is 600m, the center axis projection of abnormal body corresponds to the origin 

of solving domain，total the number of (31×31×51) nodes, node spacing is 200m, air layer thickness is 

2000m. 

Figure 2 are numerical results of PIM for three-layer medium model, as shown in figure 2, the 

calculation results of PIM are consistent with analytical solutions, the correctness of algorithm is 

verified. Figure 3 is the calculation results of model 2 by PIM when frequency is 10Hz, apparent 

resistivity profile and impedance phase profile present minimum in the central area and present 

maximum in both sides of the minimum(Fig 3), both of them better reflect the existence of 

underground abnormal body, the effectiveness of PIM for MT three-dimensional forward is further 

highlighted. 
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Figure 2 Calculation results of PIM for three-layer medium model 
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Figure 3 Calculation results of model 2 by PIM for when frequency is 10Hz 

5. Conclusion 

PIM is successfully applied to magnetotelluric three-dimensional forward, the construction process of 

three-dimensional shape functions of PIM is introduced in detail, and the discrete system matrix 

expression which corresponding to the magnetotelluric three-dimensional variational problem is 

deduced, then three-dimensional gauss integration technology containing background grid and the 

boundary conditions of loading technique are briefly described.  

The calculation results of apparent resistivity and impedance phase for three-layered medium 

model are all consistent with analytical solutions, the response characteristics of surface 

electromagnetic in 10Hz frequency also better reflect the existence of three-dimensional abnormal 

body, the effectiveness of algorithm is verified. 
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