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Abstract. In recent years, scholars have paid much attention to the problem of solving the 

diophantine equations 𝑥2 − 𝐷1𝑦2 = 𝑚, (𝐷1 ∈ 𝑍+, 𝑚 ∈ 𝑍)  and 𝑦2 − 𝐷2𝑧2 = 𝑛, (𝐷2 ∈
𝑍+, 𝑛 ∈ 𝑍). 

At present, there are only a few conclusions on 𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 1, and the 

conclusions mainly concentrated in the number of solutions and the range of it, see Ref [1] and 

[3]. 

For odd numbers 𝐷2, the integer solution of 𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 4, see Ref [4] - 

[6]. For even numbers 𝐷2, the integer solution of  (2), see Ref [7] - [11]. 

Up to now, there is no relevant result on the integer solution of 𝑥2 − 27𝑦2 = 1 and 𝑦2 −
2𝑝𝑧2 = 49, this paper mainly discusses the integer solution of it. 

1.  Introduction 

In recent years, scholars have paid much attention to the problem of solving the diophantine equations 

𝑥2 − 𝐷1𝑦2 = 𝑚, (𝐷1 ∈ 𝑍+, 𝑚 ∈ 𝑍)  and 𝑦2 − 𝐷2𝑧2 = 𝑛, (𝐷2 ∈ 𝑍+, 𝑛 ∈ 𝑍) . When 𝑚 = 1, 𝑛 = 1 , the 

equations turns into: 

𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 1                                                   (1) 

At present, there are only a few conclusions on (1), and the conclusions mainly concentrated in the 

number of solutions and the range of it, see Ref [1] and [3]. 

When 𝑚 = 1,𝑛 = 4, diophantine equations (1) turns into: 

𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 4                                                   (2) 

For odd numbers 𝐷2, the integer solution of  (2), see Ref [4] - [6]. For even numbers 𝐷2, the integer 

solution of  (2), see Ref [7] - [11]. 

When 𝑚 = 1,𝑛 = 25, the diophantine equations (1) turns into: 𝑥2 − 𝐷1𝑦2 = 1 and  𝑦2 − 𝐷2𝑧2 =
25. 

In this case, 𝐷1 = 27, 𝐷2 can be expressed as 2𝑝. Up to now, there is no relevant result on the 

integer solution of 𝑥2 − 27𝑦2 = 1  and 𝑦2 − 2𝑝𝑧2 = 49 , this paper mainly discusses the integer 

solution of it. 

2.  Critical lemma 

Lemma 1[12] When 𝐷 = 1785,4 × 1785,16 × 1785, In addition to 2 sets of integer solution 

(𝑥, 𝑦) = (13,4), (239,1352)(𝑥, 𝑦) = (13,2), (239,676); (𝑥, 𝑦) = (13,1), (239,338).the 
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indeterminate equations has 1 set of positive integer solution (𝑥1, 𝑦1), where 𝑥1
2 = 𝑥0 or 𝑥1

2 =

2𝑥0
2 − 1, and𝜀 = 𝑥0 + 𝑦0√𝐷 is the basic solution of the Pell equations 𝑥2 − 𝐷𝑦2 = 1. 

Lemma 2[12] Diophantine equations 𝑥4 − 27𝑦2 = 1 only has common solution (𝑥, 𝑦) = (±1,0). 

Proof: For 𝐷 = 27, from Lemma 1 we can get the equation 𝑥4 − 27𝑦2 = 1 has 1 set of positive 

integer solution at most. (𝑥0, 𝑦0) = (26,3) is the basic solution of 𝑥2 − 27𝑦2 = 1, then 𝑥0 = 26 is a 

non square number, 2𝑥0
2 − 1 = 1351 is a non square number, therefore Diophantine equations 𝑥4 −

27𝑦2 = 1 only has common solution (𝑥, 𝑦) = (±1,0). 

Lemma 3[13] Let (𝑥𝑛, 𝑦𝑛), 𝑛 ∈ 𝑍 be all of the solutions on 𝑥2 − 27𝑦2 = 1, then 𝑥𝑛 is a square 

number if and only if 𝑛 = 0 for any 𝑥𝑛. 

Proof: Replacing 𝑥𝑛 = 𝑎2 into the original equation, we can get 𝑥4 − 27𝑦2 = 1. From Lemma 2 

we can get Diophantine equations 𝑥4 − 27𝑦2 = 1 only has common solution (𝑥, 𝑦) = (±1,0), then 

𝑥𝑛 = 1, therefore 𝑛 = 0. 

3.  Theorem and proof 

By using elementary method such as congruence, the integer solution of the diophantine equations on 

𝑥2 − 27𝑦2 = 1 and  𝑦2 − 2𝑝𝑧2 = 25 can be obtained. 

3.1.  Theorem 

Let 𝑝 ∈ 𝑍+, then the diophantine equations  

𝑥2 − 27𝑦2 = 1 and  𝑦2 − 2𝑝𝑧2 = 25                                              (3) 

has one and only one common solution (𝑥, 𝑦, 𝑧) = (±26, ±5,0). 

3.2.  Proof of main theorem 

3.2.1.  Primary analysis.  

Because (𝑥1, 𝑦1) = (26,5) is the basic solution of the Pell equation 𝑥2 − 27𝑦2 = 1, then all solution 

of the Pell equation 𝑥2 − 27𝑦2 = 1 can be expressed as: 

𝑥𝑛 + 𝑦𝑛√𝐷 = (26 + 5√27)𝑛, 𝑛 ∈ 𝑍+. 

It is easily shown that 

(I) 𝑦𝑚
2 − 25 = 𝑦𝑚+1𝑦𝑚−1; 

(II) 𝑦2𝑚 = 2𝑥𝑚𝑦𝑚; 

(III) gcd(𝑥2𝑚+1, 𝑦2𝑚) = gcd(𝑥2𝑚+1, 𝑦2𝑚+2) = 26, 
   gcd(𝑥2𝑚, 𝑦2𝑚+1) = gcd(𝑥2𝑚+1, 𝑦2𝑚+2) = 1. 

(IV) gcd(𝑥𝑚 , 𝑦𝑚) = 1, gcd(𝑥𝑚+1, 𝑦𝑚+1) = 1, gcd(𝑥𝑚, 𝑥𝑚+1) = 1, gcd(𝑦𝑚, 𝑦𝑚+1) = 5; 

(V) 𝑥2𝑚 ≡ 1(𝑚𝑜𝑑2); 𝑦2𝑚+1 ≡ 1(𝑚𝑜𝑑2). 

Suppose that (𝑥, 𝑦, 𝑧) = (𝑥𝑚, 𝑦𝑚, 𝑧), 𝑚 ∈ 𝑍 is the positive integer solution of the diophantine 

equation (3), from(I), we can get: 2𝑝𝑧2 = 𝑦𝑚
2 − 25 = 𝑦𝑚+1𝑦𝑚−1, it is  

2𝑝𝑧2 = 𝑦𝑚+1𝑦𝑚−1                                                            (4) 

As a result the equation (4) will be: 

Case 1 𝑝 is an positive odd number. 

Case 2 𝑝 is an positive even number. 

3.2.2.  Discusion on Case 1 

Let 𝑝 = 2𝑙 − 1, 𝑙 ∈ 𝑍,(4) is equivalent to: 

22l−1𝑧2 = 𝑦𝑚+1𝑦𝑚−1                                                            (5) 

1. 𝑚 is an odd number. 

Let 𝑚 = 2𝑘 − 1, 𝑘 ∈ 𝑍,(5) is equivalent to: 
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22l−1𝑧2 = 𝑦2(𝑘−1)𝑦2𝑘                                                            (6) 

From (II), (6) is equivalent to: 

22l−1𝑧2 = 4𝑥𝑘−1𝑦𝑘−1𝑥𝑘𝑦𝑘                                                 (7) 

1.1 𝑘 is an odd number. 

From (III) and (IV), we can get gcd(𝑥𝑘−1, 𝑦𝑘−1) = gcd(𝑥𝑘 , 𝑦𝑘) = 1 ,  gcd(𝑥𝑘 , 𝑥𝑘−1) = 1 ,   

gcd(𝑥𝑘 , 𝑦𝑘−1) = 26, gcd(𝑦𝑘 , 𝑦𝑘−1) = 5, it means gcd (
𝑦𝑘

5
,

𝑦𝑘−1

5
) = 1. gcd (

𝑥𝑘

26
,

𝑦𝑘−1

26
) = 1. 𝑥𝑘−1，

𝑦𝑘−1

52
，

𝑥𝑘

26
，

𝑦𝑘

5
 are pairwise coprime. 

When 𝑘 ≠ 1, from (V) , we can get 𝑥𝑘−1 ≡ 1(𝑚𝑜𝑑2), from Lemma 3 , we can get  𝑥𝑘−1 is a 

square number if and only if 𝑘 = 1 . When 𝑘 = 1 , 𝑥𝑘−1 = 𝑥0 = 1 ,  
𝑥𝑘

26
=

𝑥1

26
= 1 ,  

𝑦𝑘

5
=

𝑦1

5
= 1 , and 

𝑦𝑘−1

52
≠ 1 for any 𝑘 ∈ 𝑍. So 𝑥𝑘−1,

𝑦𝑘−1

52
,

𝑥𝑘

26
,

𝑦𝑘

5
 can not be 2 times of any square number when 𝑘 ≠ 1. It 

means 4𝑥𝑘−1𝑦𝑘−1𝑥𝑘𝑦𝑘 = 202 ×
𝑥𝑘

26
×

𝑦𝑘

5
× 𝑥𝑘−1 ×

𝑦𝑘−1

52
 can not be 2 times of any square number. 

Therefore, (5) has no integer solution, the diophantine equation (1) has no integer solution. 

When 𝑘 = 1, (7) is equivalent to: 22l−1𝑧2 = 4𝑥0𝑦0𝑥1𝑦1 = 4 × 26 × 5 × 1 × 0 = 0, then z= 0, 

Therefore, the diophantine equation (3) has common solution (𝑥, 𝑦, 𝑧) = (±26, ±5,0). 

1.2 𝑘 is an even number. 

From (III), we can get gcd(𝑥𝑘−1, 𝑦𝑘) = 26 , then gcd (
𝑥𝑘−1

26
,

𝑦𝑘

26
) = 1 . From (IV), we can get 

gcd(𝑥𝑘 , 𝑦𝑘) = 1, and gcd(𝑥𝑘 , 𝑥𝑘−1) = 1, gcd(𝑦𝑘 , 𝑦𝑘−1) = 5. Then gcd (
𝑦𝑘

5
,

𝑦𝑘−1

5
) = 1, so when 𝑘 is 

an even number, 𝑥𝑘，
𝑦𝑘

52
，

𝑥𝑘−1

26
，

𝑦𝑘−1

5
 are pairwise coprime. 

When 𝑘 = 0, 𝑥𝑘−1 = 𝑥0 = 1. When 𝑘 = 2, 
𝑥𝑘−1

26
=

𝑥1

26
= 1, and 

𝑦𝑘−1

5
=

𝑦1

5
= 1.  

𝑦𝑘

52
≠ 1 for any 𝑘 ∈

𝑍+. So when even number 𝑘 ≠ 0, 𝑥𝑘，
𝑦𝑘

52
，

𝑥𝑘−1

26
，

𝑦𝑘−1

5
 can not equal to 1. 

From Lemma 3, we can get 𝑥𝑘 is a square number if and only if 𝑘 = 0. From (V), we can get 𝑥𝑘 ≡

1(𝑚𝑜𝑑2), So 𝑥𝑘，
𝑦𝑘

52
，

𝑥𝑘−1

26
，

𝑦𝑘−1

5
can not be 2 times of any square number when 𝑘 ≠ 0. It means 

4𝑥𝑘−1𝑦𝑘−1𝑥𝑘𝑦𝑘 = 202 ×
𝑦𝑘

52
×

𝑥𝑘−1

26
× 𝑥𝑘 ×

𝑦𝑘−1

5
 can not be 2 times of any square number. Therefore, 

(5) has no integer solution, the diophantine equation (1) has no integer solution. 

When 𝑘 = 0 , (5) is equivalent to:  22l−1𝑧2 = 4𝑥0𝑦0𝑥−1𝑦−1 = 0 , then z = 0 , Therefore, the 

diophantine equation (1) has common solution (𝑥, 𝑦, 𝑧) = (±26, ±5,0). 

2. 𝑚 is an even number. 

Let 𝑚 = 2𝑘, 𝑘 ∈ 𝑍+,(2) is equivalent to: 

22l−1𝑧2 = 𝑦2𝑘−1𝑦2𝑘+1                                                            (8) 

From (V), we can get 𝑦2𝑘−1 ≡ 𝑦2𝑘+1 ≡ 1(𝑚𝑜𝑑2), the power of 2 on the right of (8) should be 0, it 

is even-power. At the same time, the power of 2 on the left of (8) should be odd-power. Which is 

contradict with each other. Therefore, (8) has no integer solution when 𝑚 is an even number, and the 

Diophantine equation (1) has no integer solution. 

3.2.3.  Discusion on Case 2 

Let 𝑝 = 2𝑘, 𝑘 ∈ 𝑍+, then 𝐷 = 22𝑘, from  𝑦2 − 2𝑝𝑧2 = 25, we can get  𝑦2 − 22𝑘𝑧2 = 25 , it is 

equivalent to: 

(𝑦 + 2𝑘𝑧)(𝑦 − 2𝑘𝑧) = 25                                                       (9) 

Solve (9), we can get 𝑦1 = ±5, 𝑧1 = 0, 𝑦2 = ±13, 𝑧2 = ±3, 𝑘 = 2. When 𝑦2 = ±13, from 𝑥2 −
27𝑦2 = 1 we can get 𝑥2 = 4564, Obviously it has no integer solution. Therefore, the Diophantine 

equation (3) has one and only one common solution (𝑥, 𝑦, 𝑧) = (±26, ±5,0). 

To sum up, the theorem is proved. 

4.  Conclusion 
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The integer solution of diophantine equations 𝑥2 − 𝐷1𝑦2 = 𝑚, (𝐷1 ∈ 𝑍+, 𝑚 ∈ 𝑍) and 𝑦2 − 𝐷2𝑧2 =

𝑛, (𝐷2 ∈ 𝑍+, 𝑛 ∈ 𝑍) is a matter of great concern. 

By using elementary number theory methods,we solved the common solution and nontrivial 

solution on the diophantine equation when 𝑚 = 1,𝑛 = 25, 𝐷1 = 27, 𝐷2 can be expressed as 2𝑡, it is 

the diophantine equations 𝑥2 − 27𝑦2 = 1  and  𝑦2 − 2𝑝𝑧2 = 25  has one and only one common 

solution (𝑥, 𝑦, 𝑧) = (±26, ±5,0). 
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