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Abstract. To research the running safety when high-speed train running over a high-pier rigid 

frame bridge subjected to earthquakes, a coupling vibration model is set up based on the train-

track-bridge dynamic interaction theory. In this model, the seismic action is solved by the 

relative motion method and the ballast track is simulated by the elastic point support model 

with three layers. As an example, a high-pier rigid frame bridge with spans of (88+168+88) m 

is modelled, and the dynamic responses of vehicle and bridge system under El Centro seismic 

wave are calculated. The analysis results show that the dynamic responses of the high-pier 

rigid frame bridge present weakly coupled in plane and out plane, moreover the running safety 

of the train is decreased along with the increase of seismic amplitude and train speed. In 

addition, the most threat direction to the running safety of the train on bridge is transverse, and 

the running safety threshold of ICE3 subjected to 7 degree, 8 degree and 9 degree frequent 

seismic is 275, 250 and 225 km/h. 

1. Introduction 

Earthquake induced ground movements may cause intense bridge vibrations, which would affect the 

safety of bridge structures and the running trains. In the southwest mountainous area of China, the 

topography is varied and complicated, where the new railways will inevitably span many deep 

canyons and a lot of bridges with high peers are constructed. And, at the same time, earthquake 

frequently occur in mountainous area, which greatly increases the probability of trains on bridges 

when an earthquake occurs. So, as to the bridges with high peer in mountainous area, it is significant 

to research the running safety of trains on bridge when an earthquake occurs. The dynamic behavior of 

train-bridge coupling systems subjected to earthquake has been studied by many researchers [1-7]. Up to 

now, as to the bridges with high peer in mountainous area, there have not been publications on the 

coupling vibration of seismic-train-track-bridge system and the running safety of trains with the track 

model taken into account. 

In this paper, based on the theory of train-track-bridge dynamic interaction, a dynamic model of 

train-track-bridge systems under seismic excitations is established. A high-pier rigid frame bridge with 

spans of 88+168+88 m is taken as a case study. By input El Centro seismic wave, the directions of 

seismic input on the dynamic responses of vehicle and bridge system are studied. Then, as to the 

frequent seismic of 7, 8 and 9 degree, the running safety of a high-speed train running over the bridge 

is analyzed and the running safety threshold is obtained. 

2. Dynamic Model of Train-Track-Bridge System under Earthquakes 

The dynamic analysis model of train-track-bridge system under earthquakes can be regarded as a 

spatial dynamic system composed of the vehicle model, the track model, the bridge model and the 
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boundary conditions of seismic. Seismic ground motions at the supports of the bridge are taken as the 

external excitations, which act on the track subsystem through the conditions of displacement harmony 

and static equilibrium on the interface of the bridge subsystem and the track subsystem. Then, the 

earthquake action acts on the train subsystem through wheel/rail contact relationship. The dynamic 

equation of train-track-bridge system under earthquakes can be expressed as 

v v v v v v tv

t t t t t t vt bt

b b b b b b tb gb
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M u C u K u P P

                                   (1) 

where the M, C and K denote the mass, damping and stiffness matrices, respectively; u , u  and u  

the acceleration, velocity and displacement vectors, with the subscripts v, t, and b representing the 

vehicle, track and bridge subsystem, respectively; Ptv and Pvt are the interaction force vector of the 

vehicle subsystem and the track subsystem each other, which are determined by the geometric 

constraint relationship on the interface of wheel/rail [8]; Pbt and Ptb are the interaction force vector of 

the bridge subsystem and the track subsystem each other, which are determined by the relations of 

interaction between the bridge subsystem and the track subsystem [9]; Pgb is the earthquake load vector 

at the supports of the bridge, which is determined by the boundary conditions of seismic. 

Based on the previous studies, the input module of the seismic force is increased and a new 

program is formed for solving the dynamic responses of train-track-bridge coupling system under 

earthquakes, Train-Track-Bridge-Seismic Analysis System (TTBSAS) [10]. 

3. Case Study 

3.1. Design parameter 

In this paper, a high-pier rigid frame bridge, with spans of 88+168+88 m, design speed of 250km/h, 

double line space of 5.0m and on the Changsha-Kunming high-speed railway in China, is taken as a 

research example, the general arrangement as shown in Figure 1. 

 
Figure 1. General layout of main bridge (Units: cm) 

 

The total length of the bridge is 466m and the wide is 12m. The main bridge with the length of 

344m is designed as a five-span one-coupling of 88+168+88 m prestressed concrete rigid frame bridge. 

The thin-walled hollow pier that section dimension is 10×9m and thickness of the wall is 1.1m is once 

variable slope with transverse outer slope of 15:1 and transverse within slope of 10:1. The highest pier 

is 103m in height. The concrete grade of main beam and pier are respectively C55 and C35.The 

secondary dead load is 144kN/m. 

 

Changsha Kunming 
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(a) Transverse component 
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(b) Vertical component 

Figure 2. Input earthquake waves 

 

The earthquake action can be input the coupling system. In our research, a classical earthquake 

record named El Centro is taken as the input earthquake wave, which is occurred in 1940 and the 

recording station is located in EL CENTRO ARRAY #9, the waves as shown in Figure 2. 

3.2. Influence of the directions of seismic input 

To investigate dynamic response of seismic coupling system with the changes of the directions of 

seismic input, normalized El Centro seismic wave of 0.14g is inputted respectively along the 

longitudinal X, lateral Y, vertical Z, three all XYZ and calculate the dynamic response of the system 

when ICE3 high-speed train travers the bridge with the design speed of 250km/h on the single-line, the 

maximum statistical results as shown in Table 4. Among them, the number 1 to 4 denotes the four 

calculated conditions, respectively; C is the short name of the calculated conditions. 

Table 1. Maximum dynamic response of the vehicle and bridge in different seismic wave directions 

C dv dt av at Q/P ΔP/Q Q 

1 28.72  0.87  0.2483 0.0039 0.1443 0.3848 10.9  

2 9.27  63.04  0.0234 0.4225 1.0205 0.6019 99.1  

3 13.78  0.86  0.3211 0.0039 0.1417 0.3757 10.7  

4 31.12  63.10  0.3146 0.4212 0.9113 0.5538 80.6  

Table 1 shows : (1) Vertical displacement: The vertical displacement of working condition 1 is 

close to the working condition 4’s and is a little less than the working condition 4’s,and the vertical 

displacements of other working conditions are much smaller than the working condition 4’s. Therefore, 

the longitudinal ground motion and the vertical ground motion contribute to the vertical displacement 

of high-pier rigid frame bridge, and the longitudinal ground motion contributes more than the vertical 

ground motion. 

(2) Vertical acceleration: The vertical acceleration of working condition 3 is close to the working 

condition 4’s and the others are less than the working condition 4’s. Therefore, the vertical ground 

motion is the main factor causing the vertical acceleration of high-pier rigid frame bridge; 

(3) Lateral displacement and lateral acceleration: The lateral displacements and lateral 

accelerations of working condition 2 and 4 are almost identical, and the others are much smaller. 

Therefore, the lateral ground motion is the main factor causing the lateral vibration of bridge; 

(4) Running safety indexes: The vehicle derailment coefficient, reduction rate of wheel load, rail 

lateral force of working condition 2 are larger than the working condition 4’s, and they are far larger 

than the working condition 1’s and 3’s.Therefore, the lateral ground motion is the main factor that 

threatens the running safety of train for a high-pier rigid frame bridge, and threatens the ICE3 high-

speed train greatest while inputted separately. 

3.3. Running safety of train 

From the above analysis, the lateral ground motion threatens the ICE3 high-speed train greatest while 

inputted separately for a high-pier rigid frame bridge. The frequent earthquakes of 7、8、9 

fortification intensity are selected for analysis with reference to Code for Seismic Design of Railway 
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Engineering (GB 50111-2006) for the ICE3 high-speed train. El Centro seismic wave is inputted only 

along the lateral direction of the bridge corresponding that the peaks of horizontal earthquake 

acceleration are respectively 0.05g, 0.10g, 0.14g. The analysis speed changes from 200km/h to 

350km/h at intervals of 25km/h .The maximum dynamic response of the mid-span of the main girder 

of the high-pier rigid frame bridge is shown in Table 2, when the ICE3 high-speed train travers the 

bridge with the design speed of 250km/h under different seismic fortification intensities. 

Table 2 shows that the vertical displacement and vertical acceleration of bridge change a little 

under different seismic fortification intensities, and the lateral displacement and lateral acceleration 

increase with the seismic fortification intensity. The variation of dynamic response of the bridge is 

consistent with above, and it shows a weak coupling feature of the dynamic response of in-plane and 

out of plane of the bridge under earthquakes. In the 7, 8, 9 fortification intensity area, the lateral 

displacements of main beam are respectively 24.6mm, 48.5mm, 67.7mm, and lateral vibration with 

large amplitude of high-pier rigid frame bridge is induced by seismic load. 

Table 2. Maximum dynamic response of the bridge in different seismic fortification intensity 

Amplitude 
/ 7 8 9 

0.00g 0.05g 0.10g 0.14g 

dv 7.12 7.10 7.13 7.15 

dt 0.66 24.57 48.49 67.72 

av 0.02 0.02 0.02 0.02 

at 0.01 0.16 0.33 0.45 

The variation curves between running safety index of ICE3 high-speed train and speed are shown 

in Figure 3 under different seismic fortification intensities.  
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Figure 3. Running safety indexes for speed in different seismic fortification intensity 

 

Figure 3 shows, as the seismic fortification intensity and seismic load increase, the vehicle 

derailment coefficient, reduction rate of wheel load, rail lateral force and other safety indexes increase 

as well. The growth rate of running safety of train gradually decreases with the increase of speed. 
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According to the limit value of running safety of train, the safe speed can be counted under different 

seismic intensities, and then the safety threshold is got when ICE3 high-speed train travers the high-

pier rigid frame bridge under different seismic intensities as shown in Table 3. 

Table 3. Safety speed of the bridge in different seismic fortification intensity 

Seismic 

intensity 

Safety speed (km/h) Threshold 

(km/h) Q/P ΔP/Q Q 

/ 200~350 200~350 200~350 — 

7 200~275 200~325 200~275 275 

8 200~250 200~275 200~250 250 

9 200~225 200~275 200~225 225 

Table 3 shows that the limit value of safe speed of high-pier rigid frame bridge decreases with the 

increase of seismic intensity, and the limit value of safe speed under derailment coefficient is always 

minimum. Therefore, it is on the safe side that the running safety of train under the action of 

earthquake is judged by derailment coefficient directly for the high-speed rigid frame bridge. Taking 

the limit value of safe speed under the derailment coefficient as the threshold, the threshold of safe 

speed are respectively 275, 250 and 225km/h when ICE3 high-speed train travers the bridge at 7, 8, 9 

fortification intensity under frequent earthquake. 

4. Conclusions 

(1) It shows a weak coupling feature of the dynamic response of in-plane and out of plane of the high-

pier rigid frame bridge under earthquakes, and the vertical and lateral vibration produced respectively 

by longitudinal and vertical ground motion in-plane and lateral ground motion out of plane, but it 

shows a strong coupling feature of the dynamic response of train on the bridge. 

(2) For high-pier rigid frame bridge, the lateral seismic wave is the main factor that threatens the 

running safety of the train on the bridge, and that the seismic wave is inputted only along the 

transverse direction of bridge is the biggest threat to the running safety of train. 

(3) It is on the safe side that the running safety of train under the action of earthquake is judged by 

derailment coefficient directly for the high-speed rigid frame bridge. According to the calculation in 

the condition of the paper, the threshold of safe speed are respectively 275, 250 and 225km/h when 

ICE3 high-speed train travers the bridge at 7, 8, 9 fortification intensity under frequent earthquake. 
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