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Abstract. Land use change influences the hydrological as well as landscape processes such as 

runoff and sediment yields. The main objectives of this study are to assess the land use change 

and its impact on the runoff and sediment yield of the upper Serayu Catchment. Land use 

changes of 1991 to 2014 have been analyzed. Spectral similarity and vegetation indices were 

used to classify the old image. Therefore, the present and the past images are comparable. The 

influence of the past and present land use on runoff and sediment yield has been compared 

with field measurement. The effect of land use changes shows the increased surface runoff 

which is the result of change in the curve number (CN) values. The study shows that it is 

possible to classify previously obtained image based on spectral characteristics and indices of 

major land cover types derived from recently obtained image.  This avoids the necessity of 

having training samples which will be difficult to obtain. On the other hand, it also 

demonstrates that it is possible to link land cover changes with land degradation processes and 

finally to sedimentation in the reservoir. The only condition is the requirement for having the 

comparable dataset which should not be difficult to generate. Any variation inherent in the data 

which are other than surface reflectance has to be corrected. 

1.  Introduction  

Land degradation is a common problem threatening food security and deterioration of the environment 

[8][9]. In the degradation processes bio-physical factors play an important role while land cover/land 

use changes often work in triggering or accelerating the process[7][10]. The main cause of land cover 

change which occurred in various parts of the world is often due to increase of population which 

forces the clearing of natural forest in order to create land for cultivation[15][17][26][29][36]. Other 

causes for deforestation leading to land cover changes are shifting cultivation [1][20][23], commercial 

farming (rubber, cotton, plantation of fast growing trees for fuel wood), governmental policy 

change[6][13][30] or due to conflicts or political cause [28].   

When land cover/land use changes take place on marginal lands it can have detrimental effects on 

the land [14][16][19][39]. In order to study the impact of land use changes on land degradation it is 

imperative to study change pattern for which remote sensing techniques have played an important role.  

A variety of  techniques starting from comparison of visual interpretation or classification of images 

obtained in different dates[5][25] to complex change detection techniques such as cross-correlogram 
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spectral matching, change vector analysis, object oriented technique, neural network or principal 

component analysis have been applied by various researchers[4][18][22][24][31][32][33][38].  

In order to analyze the negative impact of land use changes it is important to know which land 

cover type has undergone which changes. Finding this answer is often not straight forward. Various 

change detection techniques are available[38] but information on only changed or unchanged-pixels or 

classes is not sufficient if we want to analyze the effect of land cover or land use changes on land 

degradation. On the other hand, if we want to assess which land cover has underdone which changes 

and if we have only remote sensing data from the past, generating land cover information in the 

absence of trainings samples will not be so straight forward. In the present paper a technique is 

described to derive land cover information from previously obtained remote sensing data based on 

spectral characteristics of recently obtained image. 

2.  The Methods 

The main objectives of this study are to assess the land use change and its impact on the runoff and 

sediment yield of the upper Serayu Catchment. In this paper we describe a method to derive land 

cover/land use information from a watershed in central Java for the year 1991 based on the analysis of 

recent data (Landsat data from 1989 to 2015) and field work. The result of the land use change 

analysis will be compared with data of sediment measurement to see the relation between land use 

change ad sediment transports.  

2.1.  Study Area 

The study area is located in the upper Serayu basin, Central Java, Indonesia (Figure 1) covering a 

surface area of about 95,174 Ha. The east to west axis is about 43 km and north to south corner about 

29 km. The elevation varies from 225 m above sea level in the western part to more than 2000 m in the 

north eastern part, the highest mountain being Sumbing with an elevation of 3325 m. The area is 

volcanic with several active craters (Sindoro and Sumbing volcano). [37] described the 

geomorphology of the area as strongly eroded volcanic terrain. Geomorphologically the area is 

characterized by having volcanic cones, plateau (Dieng Plateau), strongly dissected mountain slopes 

and alluvial lowlands consisting of terraces and flood plain. The area is drained by several rivers 

(Merawu, Tulis, Begaluh) which join the main drainage system, the Serayu river which feeds into a 

reservoir which is located in the south-west lowland. The climate is equatorial tropical with mean 

annual rainfall varying from 1700 mm up to 4200 mm per year and mean annual temperature varying 

from 14 to 27
0
 C.  

 

Figure 1. The study area in Serayu Watershed, Central Java, Indonesia. 
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2.2.  Materials used and data collection 

Two sets of Landsat ETM data (data acquisition 2014 and 1991) were acquired from the Serayu basin, 

Central Java, Indonesia. The data was geo-referenced and assigned UTM coordinates. Field work was 

carried out during 2014. Field observations were made using stratified random method: the first 

stratification is based on major land cover/land use classes. The main land cover classes identified 

were forest, plantation forest, dry land cultivation, paddy fields, bare soil, water body and settlements. 

For each land cover/land use class a number of samples points were taken which were randomly 

distributed, their locations were recorded using a GARMIN GPS receiver. The sample points were 

separated in 2 groups: one for training samples and one for validating the classification results. In 

addition, other data related to land degradation were also collected.  

2.3.  Making data comparable   

In order to do land cover change analysis using remotely sensed data from different dates, it is 

essential to make the different datasets comparable. A data set obtained in one date has to match the 

radiometric and geometric parameters of other data set. Other option is to bring both the data set to a 

common base. Directly obtained remotely sensed image is known to have not only surface reflectance 

data but also artifacts caused by various factors which might be inherent in the data e.g. variations due 

to scattering of light, solar zenith angle, seasonal effect or due to topographic variation.  Even if the 

two dataset are obtained in the same month there could be some difference in solar azimuth due to 

different acquisition dates and this could have some influence in the data.  

     Thus the data had to be corrected for atmospheric haze and the sensor induced gain effect which 

was then converted to at-sensor radiance. Finally, the at sensor radiance data were converted into top 

of atmosphere reflectance taking into account the solar zenith and azimuth angles based on the data 

acquisition date and the time. Converting the at sensor radiance value into top of atmosphere 

reflectance was carried out using equation and calibration data as explained in [3]. In the resulting data 

set pixel values represent per cent reflectance and are in the range of 0 to 100 in the corresponding 

spectral bands which ensure that both the data sets (1991 and 2014) are comparable and ready for 

further analysis.  

2.4.  Defining reference spectra for the main land cover classes 

In order to make land cover/land use map, it is important to define reference spectra for the main land 

cover types. Based on the sample points taken from each land cover/land use class in the fieldwork 

carried out during 2014 the corresponding reflectance values were collected from the corrected 

Landsat TM data of 2014.  
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Figure 2. Spectra of various land cover/land use classes. 

2.5.  Generating NDVI and DVI 

The reference spectral for each land cover class is derived based on the top of atmosphere reflectance 

data generated on Landsat of 2014. In figure 2 and in table 1 the spectra representing the main land 

cover/land use classes in the area are shown. 

For land cover/land use classification and change detection analysis, spectral reflectance data alone 

may not be sufficient. The basic question on whether the land surface is covered by vegetation or not 

can be easily answered by using the normalized difference vegetation index (NDVI).  For deriving 

NDVI the commonly used algorithm for Landsat Thematic Mapper bands (tm3 and tm4) is used. The 

resulting NDVI values are in the range of -1.0 to +1.0, the positive and higher NDVI values indicates 

the presence of vegetation cover while the values close to zero may mean water bodies or bare surface. 

For further image analysis the data with negative value is not convenient, thus it is converted into 

positive digital numbers (DNNDVI) as follows:  

 
                      (1) 

 

The NDVI is multiplied by 25 and an additional 25 is added to avoid negative values which means 

that any pixel value of less than 25 means that it is not covered by vegetation. Thus the resulting index 

(DNNDVI) can be used to separate between vegetation cover from bare surfaces. But it cannot be used 

to differentiate between different vegetation types since it is not sensitive to variations of the 

difference between the reflectance in near infrared and red. For an example plantation forest and 

natural forest cover may show similar DNNDVI value (table 1) but the plantation forest cover has 

relatively higher reflectance in the near infrared band because of different tree species 

(AlbisiaFalcataria) as compared to that of natural forest. Moreover in the plantation forest area the fast 

growing tree species are often intercropped with durian (Durio zibethinus) or salak (Salacca zalacca, 

snake skin fruit) or other field crops thus increasing the canopy cover. In order to map these 

differences the difference vegetation index (DVI) would be handy. The DVI is generated simply by 

subtracting TM3 from TM4 as follows: 

 
                (2) 
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    The magnitude of the DVI could then be used to differentiate the different forest types. For an 

example the mean DVI value of forest is 11 and that of plantation forest is 19, showing a clear 

difference between them, whereas their DNNVDI values shows 50 and 48 respectively which can be 

considered similar (table 1). For the generation of DVI the output pixel value is assigned 0 if the value 

of tm3 is larger than tm4. This is done in order not to have negative values in the resulting DVI image.  

2.6.  Deriving classification parameters 

Once the reference spectra are defined and the mean DNNDVI and the DVI are generated for each 

cover class (table 1), the remote sensing data obtained in earlier date can be classified. The mean 

values in the corresponding spectral bands in each cluster are considered as being the reference for that 

class. Similarly, the mean DN and DVI values are generated for each land cover/land use class. 

Table 1. Reference spectra for major land cover/land use types. 

 

For land cover classification similarity index is applied. Similarity can be defined by Euclidian 

distance and the spectral angle between the test pixel and the reference spectra. If the Euclidian 

distance is within the threshold, then it is considered similar. The similarity vector (    ) can be 

computed as follows: 

    
      
      
      

    
   

   

   

     (3) 

 

Where t1- tn are the reflectance values in the corresponding bands of the test pixel, and c11 - c1n 

are the corresponding reflectance values of a reference class.          represent the elements of the 

similarity vector         . From the test pixel distances are calculated to each class center. The magnitude 

of the similarity vector being: 

          
      

       
     (4) 

 

    The test pixel is classified and class label is assigned according to nearest distance if that distance is 

within the threshold limit for that class. Threshold values are determined using statistics of the main 

land cover classes. The training samples collected in the field are used to find the distribution pattern 

(the mean and standard deviation).  The class mean and standard deviation are used to derive the 

spread of the class.  In table 2 the statistics of various cover types are given. 
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Figure 3. From the test pixel t, the similarity distances can be estimated and the one with the shortest 

distance to a class centre can be considered similar if it is within the threshold value from that class 

centre. 
 

     So, spread of reflectance value (95% confidence interval) from its mean in any spectral band for a 

given class can be estimated using its mean (     ) and the standard deviation (    ) as follows: 

 

                                                                                                                 (5) 

     The magnitude of the class spread from its center location can be estimated as: 
 

                                             
                   

                                           (6) 

Similarly, spectral angle is also checked if the test pixel is similar to a class. Spectral angles are 

computed between test pixel and the reference spectra which is given by (Kruse, Lefkoff et al. 1993) 

as follows:  

                     
    

   
 
   

    
 
            

 
                                                        (7) 

 

    Final assignment of the class label is done by checking the corresponding DNNDVI and the DVI 

values if they are also within the threshold limits for that class.  

2.7.  Classification  

It is cumbersome to compute classification on a pixel by pixel basis thus it is performed in two steps: 

(i) first grouping of spectrally similar classes is done by unsupervised clustering, and (ii) assigning 

class label to the generated cluster based on similarity measures. The iterative self-organized 

unsupervised clustering algorithm (ISODATA) of ERDAS Imagine software was used to do grouping 

of spectrally similar classes. A separate dataset was created which consists of 6 bands of Landsat TM, 

DNNDVI and DVI.  A series of unsupervised classification runs was implemented on this new dataset 

with a predefined number of classes starting from 5 with an increase of one in every step and with 

maximum number of iterations of 50. The convergence threshold was set to 1.0. The divergence 

statistical measure of distance between generated cluster signatures by each run was used to select the 

optimal run [11].  
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Table 2. Statistics of the reflectance values of the major land use classes. 

 
 

    The optimal run with a distinguished peak in divergence separability explains the optimal size of 

spectrally similar groups [12]. In case of 1991 data, the highest divergence value of 3645 was obtained 

for 28 classes (figure 4). Once the optimal number of groupings is made, they can be linked to class 

label using the similarity parameters as explained in section 3.5. For assigning the final class label to 

the spectrally similar groups, the following procedure was followed. 

 
Figure 4. Average divergence values versus number of predefined number of classes in unsupervised 

classification. 

Condition 1 

 Euclidian distance and the spectral angle to a class under consideration has to be minimum of all 

the distances and that distance should be within the limit set by the class spread for the 

corresponding class (Table 3.). If there is discrepancy, then the spectral angle with the lowest 

value will be considered.  

 In addition to this the DNNDVI and the DVI values are checked if they are within the threshold 

limits for that class. 

 If all the above criteria are fulfilled the cluster will be class labeled or else go to condition 2. 

Condition 2 

 The minimum Euclidian distance and the spectral angle are larger than the threshold limit for any 

land cover class. 

 If this is the case then the class label “Unknown” will be assigned to the cluster. 
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 In addition to the classification using similarity measures, the maximum likelihood classification 

algorithm using training samples collected during the fieldwork was also applied for 2014 image. 

This was done to compare the results of two classification methods.  

Table 3. Euclidian distances from the resulting classes of unsupervised 

classification results to established land cover classes, the one with minimum 

distance will be class labelled. 

          

2.8.  Classification Accuracy Assessment 

A set of field sample points was set aside for testing the classification accuracy for 2014 image.  

3.  Results and Discussions 

3.1.  Classification of the recent image 

Result of the land cover classification for 2014 image using similarity measures is given in figure 5. 

The result shows that the watershed covers highest surface cover by plantation forest (54%) which is 

followed by primary forest (21%) and dry land cultivation (13%) (table 6). Overall accuracy of 

classification which is obtained by the total correctly classified pixels over total number of test pixels 

is 77 %t with 75 % of reliability (table 4). 

 

 

Figure 5. Land cover in 2014. 
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The result of applying the maximum likelihood algorithm on the same data set shows overall accuracy 

of 68 percent which is lower than that of applying similarity measures (table 5). Also maximum 

likelihood classification resulted in lot of pixels being undefined or unclassified (5 % of the total area 

which include also water bodies being classified as unknown). In both the classifications paddy field 

scored the lowest accuracy (35 %).  

Table 4. Accuracy assessment of similarity measures. 

 

Table 5. Accuracy assessment of maximum likelihood. 

 

3.2.  Classification of 1991image 

The reference spectra based on 2014 data (table 1) was applied to classify 1991 image following 

similarity measures as explained in section 2.6. The result shows the highest surface cover by 

plantation forest (45 %) and dry land cultivation (21 %) which is followed by primary forest (18 %) 

(figure 6). 

   
Figure 6. Lands cover classification of 1991 image. 
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     Land cover map is not available from early nineties to validate the accuracy of the applied method 

but wide spread land use change in the form of deforestation to increase land for cultivation and to 

implement the government sponsored introduction of fast growing trees for increasing the production 

of the area is reported in the Serayu watershed [27].  The widespread deforestation in the early nineties 

in the watershed resulted in very high soil erosion in the steep slopes with the consequent deposit of 

high amount of suspended sediment in the Mrica reservoir, located in the southwest lowlands of the 

Serayu basin. The annual deposit of suspended sediment in the reservoir in 1991 (6,018,471 m
3
) is 

considered to be the year with one of the highest recorded annual sediment deposition in the reservoir 

(figure 7).   

 
Figure 7. Suspended sediment deposition in the reservoir. 

 

     This can be used as an evident to validate the land cover classification performed in Landsat TM 

1991 data. Estimation of the yearly deposit of suspended sediment is based on daily measurement of 

sediments at the intake of the reservoir. This data then calibrated with bathymetry measurements 

which also done on a yearly basis.  The data is available for the year 1989 – 2010. From figure 7 we 

can understand that high sedimentation in 1991, 1998 and 2000 and relatively lower sediment 

deposition in the year 2009.   

 

Figure 8. Major land use change policies in Indonesia. 

    By comparing land-use/cover in 1991 and 2014, we can see that in 1991 image there are significant 

bare lands in the study area. Most of the bare land is belong to Merawu catchment, and if we compare 

from figure 7 we can see that in 1991 the erosion rate from the Merawu Catchment is significantly 

high. Using this evident, we can claim that most of the erosion is come from the bare land. In the other 

hands, if we take a look at figure 8, we can see that in early 90’s, the government has a program for a 
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community forest. Therefore, to meet the land needs for the community forest, some land clearing was 

done. This fact is another evident that the image in the 1991 is qualitatively correct.  

3.3.  Land covers change from 1991 to 2014 

The results of the land cover classification of 1991 and 2014 shows the highest changes in plantation 

forest and dry land cultivation in the area. Plantation forest cover is increased in 2014 by 8391 ha 

(9.27 % of the whole area) and the dry land cultivation area is decreased by 7348 ha (8.11 %) (table 

6).  Paddy field area is increased by 1.49 %. High soil erosion in the Serayu watershed resulting in 

high sedimentation in the Mrica reservoir is very much related to government sponsored land use 

policies in the area. In early nineties community forest program (called sengonisasi in Indonesian) was 

introduced to increase the economic condition of the Serayu basin [27]. Land was cleared to 

implement this program. The government introduced fast growing trees called Sengon laut 

(Paraserianthesfalcataria) in the area which grows fast enough to be ready for harvest after 4-5 years 

thus increasing the income of the people living there.  

    The result of the first harvest of the fast growing trees in 1995 had led to high soil losses and high 

sedimentation in the reservoir (figure 5). In 1998 there was again economic crisis in Indonesia 

following the fall of the Soeharto regime and the global economic crisis which led to high 

unemployment problem (figure 6). Since the education level in Dieng plateau and its surrounding area 

is low [2], agriculture is the only sector that could absorb large number of labours [34]. The increase 

of agricultural activity in the area has led to more forest clearing which increases soil erosion 

significantly. This high rate of erosion not only creates a major problem in the agricultural area, but 

also sedimentation problem in the reservoir built for hydro power generation (figure 7).  

Table 6. Land cover change from 1991 to 2014. 

 

4.  Conclusion  

The main objective of this study was to assess the land use change and its impact on the runoff and 

sediment yield of the upper Serayu Catchment. Two period of land use analysis was done from 1991 

to 2014 using Landsat imagery reveals that there is a significant land use changes. Largest increase on 

the area was found on plantation forest followed by forest, paddy fields and built up area.  The 

changes were 8391 ha, 3206, 1353 and 203 respectively. Dry land cultivation and bare soil were 

reduce significantly during the last decade by -7348 ha and -5379 ha. The result then compared with 

the sediment measurement. Taking into account the results of the land use analysis, we can conclude 

that the sediment was decrease significantly due to land use changes. 

    The study shows that it is possible to classify previously obtained image based on spectral 

characteristics and indices of major land cover types derived from recently obtained image.  This 

avoids the necessity of having training samples which will be difficult to obtain. On the other hand, it 
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also demonstrates that it is possible to link land cover changes with land degradation processes and 

finally to sedimentation in the reservoir. The only condition is the requirement for having the 

comparable dataset which should not be difficult to generate. Any variation inherent in the data which 

are other than surface reflectance has to be corrected.  
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