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Abstract. In studies related to soil optical properties, it has been proven that visual and NIR soil 

spectral response can predict soil moisture content (SMC) using proper data analysis techniques. 

SMC is one of the most important soil properties influencing most physical, chemical, and 

biological soil processes. The problem is how to provide reliable, fast and inexpensive 

information of SMC in the subsurface from numerous soil samples and repeated measurement. 

The use of spectroscopy technology has emerged as a rapid and low-cost tool for extensive 

investigation of soil properties. The objective of this research was to develop calibration models 

based on laboratory Vis-NIR spectroscopy to estimate the SMC at four different growth stages 

of the soybean crop in Yogyakarta Province. An ASD Field-spectrophotoradiometer was used 

to measure the reflectance of soil samples. The partial least square regression (PLSR) was 

performed to establish the relationship between the SMC with Vis-NIR soil reflectance spectra. 

The selected calibration model was used to predict the new samples of SMC. The temporal and 

spatial variability of SMC was performed in digital maps. The results revealed that the calibration 

model was excellent for SMC prediction. Vis-NIR spectroscopy was a reliable tool for the 

prediction of SMC.  

1.  Introduction 

Soils vary in space and time due to the combined effects of physical, chemical, and biological processes 

that operate at different scales and with different intensities [1]. Some soil properties are very stable, 

changing slightly by the time, such as texture and soil organic matter content. The other soil properties, 

such as nitrate (NO3) and moisture content can fluctuate rapidly. Soil moisture is the major factor of the 

soil in plant growth. The gross effects of deficient and of excessive soil moisture on plant growth are 

well known. With irrigation and, where necessary with drainage, the farmer has the opportunity to 

exercise greater control over soil moisture than he does over any of the other soil physical factors [2]. 

Various measurable aspects of plant growth do not respond in the same manner to increasing moisture 

stress. The water that comes out of the ground system through evapotranspiration, drainage, and 

subsurface water flow, first had to interact with the soil and partly stored in it within a few moments up 

to many years. It is important to measure and monitor soil moisture to improve crop yield forecasting 
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and irrigation planning. The problem is how to provide reliable, fast and inexpensive information of soil 

moisture in the subsurface or root zone from numerous soil samples and repeated measurement. 

Gravimetric method is currently the most commonly accepted and most reliable method for soil 

moisture determination and calibration of all indirect measurement methods [3]. Despite its advantages 

of accuracy and high reliability, the gravimetric method is time and resource consuming, destructive, 

and unrepeatable. The development of sensing technology coupled with advances in information and 

communications technology is very supportive of the use of soil sensing. Soil sensing can facilitate the 

measurement and monitoring of the soil’s physical and biochemical attributes to better understand their 

dynamics and interaction with the environment while considering their large spatial heterogeneity [4]. 

The proximal soil sensing (PSS) techniques have been developed to obtain georeferenced data on 

many soil parameters at different scales and times to better understand the variability [5]. Proximal soil 

sensing is field-based sensors to obtain signals from the soil when the sensor’s detector is in contact 

with or close to (within 2 m) the soil [6]. The sensors provide soil information because the signals 

correspond to physical measures, which can be related to soils and their properties. 

In precision agriculture, techniques such as diffuse reflectance spectroscopy and geostatistics are 

considered increasingly for the prediction of soil characteristics and to characterize within-field spatial 

variation [7]. Rossel et al. [8] demonstrated the potential of diffuse reflectance spectroscopy, using the 

VIS, NIR, MIR and combined spectra, and showed how qualitative soil interpretations might aid with 

the identification and assignment of spectral bands to soil constituents. The Vis-NIR real-time soil 

sensor also had great potential for determining the soil properties at 10, 15, 20 cm soil depth [9]. Vasques 

et al. [10] investigated the potential use of Vis-NIR diffuse reflectance spectroscopy to classify soils in 

areas with soil, geology, and topography that varied in southeastern Brazil from three depth intervals 

(0-20, 40-60 and 80-100 cm). This novel approach can improve soil classification and survey in a cost-

efficient manner, supporting sustainable use and management of tropical soils. 

The objective of this research was to develop calibration models based on laboratory Vis-NIR 

spectroscopy and partial least-square regression (PLSR) analysis to estimate the soil moisture content 

(SMC) at four different growth stages of the soybean crop in two small farms at Yogyakarta Province. 

The SMC was measured using the Gravimetric method, while the soil reflectance was scanned with an 

ASD Field-spec 3 (range from 350 nm to 2500 nm). The PLSR with full cross-validation was performed 

to establish the relationship between the SMC with the pre-treated Vis-NIR soil reflectance spectra. The 

selected calibration model was used to predict the other new samples of SMC. The temporal and spatial 

variability of SMC was performed in digital maps using inverse distance weighted (IDW) interpolation 

method. These maps gave much information to be interpreted carefully due to many factors affect the 

SMC. They were useful in supporting the process of decision making in field management. 

2.  Material and methods 

2.1.  Site description 

The research was conducted at soybean farms in two locations, i.e. Natah Village, Nglipar District, 

Gunung Kidul Regency or G-field (7°51'39.0"S, 110°39'19.4"E) and Jatimulyo Village, Dlingo District, 

Bantul Regency or B-field (7°55'22.5"S, 110°29'08.7"E), in Yogyakarta Province (figure 1). The 

elevation of Nglipar ranges from 200 to 210 m asl., while Dlingo elevation ranges from 190 to 200 m 

asl. The slope varies between 5° to 10° which Dlingo was steeper than Nglipar. The variability of soil 

classification in the research area was high, even occurred in the same landform. Soils in the study area 

were tentatively classified as Hapludults and Dystrudepts at Nglipar, while soils at Dlingo were 

classified as Hapludalfs, Eutrudepts, and Udorthents (table 1).  

Nglipar and Dlingo had the tropical climate and classified as Am by Köppen and Geiger. The average 

annual temperatures of Nglipar and Dlingo were 25.2 °C and 25.8 °C, and the average rainfalls were 

2,083 mm and 2,019 mm [11]. table 2 shows the average of monthly rainfall of the past 10 years. During 

the research, the monthly rainfalls from October 2016 to January 2017 were: 253, 526, 305 and 369 mm 

at Nglipar, and 232, 312, 420 and 411 mm at Dlingo [12].  
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Table 1. Soil class and landform of Nglipar and Dlingo 

 

Table 2. The monthly rainfall average of 2007-2016 (mm) 

Month 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Location 

Nglipar(G) 314 334 277 190 123 79 53 38 117 80 219 496 

Dlingo (B) 381 438 335 306 216 121 45 25 75 89 295 386 
Source: BMKG, Sleman DIY (2017) 

 

The activities and crop pattern in the farm at Nglipar and Dlingo were almost the same every year.  
 

Table 3. The yearly crop pattern at Nglipar and Dlingo 

Month 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Location 

Nglipar(G) GN GN GN SB SB SB - - - SB SB SB 

Dlingo (B) SB/C SB/C SB/C VB VB VB - - - SB SB SB 
GN: Ground Nut; SB: Soy Bean; C: Corn; VB: Velvet Bean 

 

 

 

Soil Class  

(Great group) 
Proportion (%) Landform 

Parent 

material 

Relief 

(% slope) 

Nglipar, Gunung Kidul: Tectonic Group 

Hapludults 50-75 Undulated 

tectonic plain 

claystone, 

sandstone 

undulated 

(8-15) Dystrudepts 25-50 

Dlingo, Bantul: Karst Group 

Hapludalfs 50-75 

Karst hill limestone 
Small hilly 

(15-25) 
Eutrudepts 25-50 

Udorthents 10-25 
Source: Indonesian Center for Agricultural Land Resources Research and Development (BBSDLP, 

2016) 

G 

B 

Figure 1. Location of the research area:  

G-field: Nglipar, Gunung Kidul Regency 

B-field: Dlingo, Bantul Regency  
(Source: Modified from Google Map 2017) 
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2.2.  Soil sampling 

Due to the irregular and terrace shapes of the fields, the layout of sample points was set up using the 

grid method combined with a transect line of 5 meter interval (figure 2). There were 30 sample points 

for each field marked with bamboo sticks. The soil was sampled 4 stages within one cropping season of 

soybean from October 2016 to January 2017, i.e., before planting (I), vegetative stage (II), generative 

stage (III) and after harvesting (IV). Soil at each point was taken using auger at a depth of 5-15 cm about 

500 grams and stored in a labeled zip lock plastic bag. All samples were air-dried, then gently crushed 

to break up larger aggregates, afterward removed the visible roots, and each sample was sieved at 2 mm 

strainer. Eighty soil samples (10 x 2 x 4) were prepared for soil moisture analysis as the referenced 

parameter, and all 240 soil samples (30 x 2 x 4) were prepared for spectroscopic measurements as the 

predicted parameter. 

 

    

Figure 2. Field layout  

left: Nglipar field (1,500 m2), right: Dlingo field (1,300 m2)  
(Modified from Google Earth 2012) 

2.3.  Soil moisture content analysis 

The soil moisture content was analyzed by the Soil Analytical Services Laboratory at UPN “Veteran” 

Yogyakarta using the Gravimetric method, i.e., calculates soil moisture by the difference between the 

fresh weight and dry weight of a given soil sample. A 40 g fresh weight subsample was taken from the 

soil sample of each plot was weighed and placed into a tin and then oven dried at 105º - 110º C for 24h. 

After drying the samples are reweighed. 

2.4.  Laboratory Vis-NIR Spectroscopy 

The spectroscopy measurement was performed at the University of Palangka Raya, Central Kalimantan, 

using ASD Field-spec®3 350-2500 nm (Analytical Spectral Devices Inc., Boulder, Colorado, USA). 

Each soil sample was placed into a 5 cm diameter of ring sample (Eijkelkamp) and flattened the surface. 

A black aluminum ring plate (modified by TUAT Laboratory, Japan) was fitted on the top of ring sample 

to hold the ASD probe of the optic sensors and keep the same distance from the probe tip to the sample 

surface (figure 3).  
 

 

 

 

 

 

 

Figure 3. Soil reflectance measurement  

left: soils in ring sample 

right: The ASD probe was inserted into a black 

aluminum ring plate on the sample surface 

G B 
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The reflectance of each sample was scanned 10 times with different positions by moving the ring 

sample circularly, and the results were averaged in post-processing (figure 4). Every 15 minutes the 

instrument was calibrated by measuring the reflectance of the white panel as a white reference. The 

reflectance value of each spectrum was recorded in the computer and translated from binary to ASCII 

using ViewSpecPro software. 

 

  

Figure 4. Examples of 10 times reflectance measurements from a soil sample  

(left: sample of G IV-25; right: sample of B III-15) 

2.5.  Pretreatment, calibration and prediction process of spectral data 

The first step in developing the prediction models was the pretreatment of the spectral data. The process 

of pretreatment, calibration, and validation were performed using Unscrambler X software. The 

measured reflectance spectra were transformed in absorbance through the log (1/R) to reduce noise, 

offset effects, and to enhance the linearity between the measured absorbance and soil properties [13]. 

To enhance weak signals and remove noise due to diffuse reflection, the absorbance spectra were pre-

treated using the second derivative Savitzky and Golay method [14]. Moreover, both edges of the spectra 

were removed as these parts of the spectra were unstable and rich in noise [9].  

The calibration models were subsequently developed by applying the partial least-square regression 

(PLSR) technique coupled with full cross-validation to establish the relationship between the amount of 

soil moisture content (reference values) with the pre-treated Vis-NIR soil absorbance spectra from the 

corresponding locations [9].  

Two calibration models were developed, i.e., Nglipar (G) and Dlingo (B) SMC models. The models 

combined the dataset of 40 referenced SMC values (10 x 4) and the treated spectra of 600-2300 nm 

wavelength for each SMC model. In the PLSR analysis, sample outliers were detected by checking the 

residual sample variance plot after the PLSR. Individual sample outliers located far from the zero line 

of residual variance were considered to be outliers and excluded from the analysis. Due to the small 

number of data set for calibration (40 samples), the number of outliers was limited to maximum 6 

samples.  

The selection criteria of any pretreatments were the largest coefficient of multiple determinations 

(R2) and the smallest of Root Mean Square Error (RMSE). The full cross-validation ability of PLSR was 

given by the value of residual prediction deviation (RPD). The ability of NIRS to predict values of soil 

properties can be grouped into three categories based on RPD values: category A or excellent (RPD 

>2.0), category B or good (RPD = 1.4~2.0), and category C or unreliable (RPD <1.4) [15]. RPD was 

given by the ratio of standard deviation (SD) of the reference dataset to the root mean square error of 

full cross-validation (RMSEval), as in equation (1) [9]. 

RPD = SD. RMSEval
 -1

     (1) 

Each selected calibration model was used to estimate the moisture value of the new samples in associated 

location. 
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2.6.  Mapping the temporal and spatial of SMC variability 

The support of GIS is very helpful in giving visual information to support the decision making in the 

management of site-specific farming. In this research, the ArcGIS Ver. 10.2 software was used to 

perform the temporal and spatial of SMC variability maps. The inverse distance weighted (IDW) method 

was applied to do the spatial interpolation.  

3.  Results and discussion 

To generate spectrum data, radiation containing all relevant frequencies in the particular range is 

directed to the sample. The radiation will cause individual molecular bonds to vibrate, and they will 

absorb light, to various degrees, with a specific energy quantum corresponding to the difference between 

two energy levels. As the energy quantum is directly related to frequency, the resulting absorption 

spectrum produces a characteristic shape that can be used for analytical purposes [16]. 

The soil has an easily distinguishable characteristic reflectance pattern in the visible, near-infrared 

and mid-infrared wavelengths [17]. Water has a strong influence on vis-NIR spectra of soils. The 

dominant absorption bands of water around 1400-1900 nm are characteristic of soil spectra [18]. Water 

also reduces the reflectance of regions in the short-wave infrared, particularly around 900, 1400, 1900 

and 2200 nm [19]. 

3.1.  Soil properties description 

There were many factors affect the variability of SMC, for example, the texture and structure. Soil 

structure, texture, and depth determine the total capacity of the soil for storing available water for plant 

growth [2]. Clay soils hold large amounts of nutrients and water tightly, slow infiltration or high runoff 

means much erosion and may shrink/swell, depends upon the type of clay minerals present [20]. table 4 

describes the properties of the soil used in this study. The soil properties of all 80 samples were classified 

as clay with very low organic matter content (SOM) and moderate cation exchange capacity (CEC). 

 

Table 4. Properties of the soils at research area  

Property 
Clay 

(%) 

Sand 

(%) 

Silt  

(%) 
pH 

SOM 

(%) 

CEC 

(me%) 

Nglipar 64.33 22.04 13.63 07.22 0.98 16.92 

Dlingo 69.09 22.67 8.24 07.09 1.10 20.06 

 

The landform such as terraced field is also affecting the SMC. Soil moisture amount was greater in 

terrace channels as compared to terrace intervals [21]. Research in terrace land showed that rainfall 

significantly affected the temporal stability of soil water storage in the depth of 0–0.6 m and increased 

from the upper to lower slope [22]. 

Both farmers at Nglipar and Dlingo used the same variety of Soybean (Grobogan) which was ready 

to harvest about 80 days. They grew the soybean at the rainy season from October 2016 to January 2017, 

and soils were sampled before planting (October 28), at vegetative stage (November 14), at generative 

stage (December 1) and after harvesting (January 19). During the research, the monthly rainfalls from 

October 2016 to January 2017 were: 253, 526, 305 and 369 mm at Nglipar, and 232, 312, 420 and 411 

mm at Dlingo. 

Rainfall was the only supply for the crop water requirement in these farms. High amounts of rainfall 

that occur during vegetative growth are normally not beneficial unless soil water levels are extremely 

low before or after planting [23]. Soybean requires the most water from flowering through seed fill. By 

considering other factors affecting evapotranspiration, the SMC information given in figure 5 could 

contribute to predicting the crop water requirements based on growth stages. Therefore, the actions to 

maintain water needs can be decided properly before the next stage. 
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Figure 5. Soil moisture of 10 referenced samples at different stages and locations  

Eighty graphs (10 x 2 x 4) from the total of 240 soil spectral measurements are shown in figure 6 and 7.  

 

  

  

Figure 6. The soil reflectance of 10 referenced samples at different stages in Nglipar (G)  

Soil reflectance can be influenced by some factors, such as soil texture, surface roughness, organic 

matter content, color and moisture content [3]. Field soil reflectance is reduced, particularly in the visible 

portion of the spectrum, when the moisture content is high [17]. Soil moisture and organic matter 

increase soil absorbency and result in overall lower soil reflectance [19]. To study the correlation 

between the soil reflectance, SMC, and growth stage. The sample G25 (figure 6) and B26 (figure 7) at 

about 1415 nm wavelength were picked for examples (table 5). 

 

Table 5. The example of correlation between soil reflectance (R),  

soil moisture content (SMC) and growth stage at 1415 nm wavelength 

Sample point G 25 (Nglipar farm) B 26 (Dlingo farm) 

Parameter R1415 SMC (%) R1415 SMC (%) 

Stage I 0.21 16.8 0.15 15.9 

Stage II 0.35 11.3 0.17 14.9 

Stage III 0.27 13.4 0.19 12.9 

Stage IV 0.34 11.4 0.18 14.3 

 

G25 

G25 

G25 

G25 

R1415, SMC GI 25:  

(0.21; 16.8%) 

R1415, SMC GII 25:  

(0.35; 11.3%) 

R1415, SMC GIII 25:  

(0.27; 13.4%) 

R1415, SMC GIV 25:  

(0.34; 11.4%) 
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Figure 7. The soil reflectance of 10 referenced samples at different stages in Dlingo (B)  

The increase of soil reflection values on samples G25 and B26 followed the decline of SMC. The 

effect of whitish color at G25 was strong to increase the reflectance, however high moisture might lower 

it. The soil color of B26 was darker than G25, so the reflectance value was lower. The higher the SMC, 

the wetter or darker the soil so the reflectance value was lower.  

3.2.  Multivariate Statistical Analysis 

The most common calibration methods applied are based on linear regressions, namely stepwise 

multiple linear regression (SMLR), principal component regression (PCR), and partial least squares 

regression (PLSR). PCR and PLSR techniques can cope with data containing large numbers of predictor 

variables that are highly collinear [16]. However, PLSR is often preferred by analysts because it relates 

the response and predictor variables so that the model explains more of the variance in the response with 

fewer components, it is more interpretable, and the algorithm is computationally faster. 

There were four steps of pretreatment to the spectral data before proceeding them for calibration to 

enhance weak signals and remove noise due to diffuse reflection, i.e.: 

a. Spectroscopic transform: reflectance to absorbance  

b. Derivative Savitsky-Golay transform: second derivative and 2 polynomial order  

c. Remove both edges of the spectra (<600 nm and > 2300 nm)  

d. Convert spectral data from 1 nm interval to 10 nm interval. 

The statistical descriptions of SMC data for calibration process are shown in table 6. The SMC at 

Nglipar ranges from 8.25 to 16.80%, with a mean value of 14.28%, while the SMC at Dlingo ranges 

from 12.60 to 19.34%, with a mean value of 15.03%.  
 

Table 6. Descriptive statistics of soil moisture content data 

SMC Sample Mean Max Min Range SD Var. RMS Skew 

Nglipar 40* 14.28 16.80  8.25 8.55 1.52 2.31 14.36 -18.41 

Dlingo 40* 15.03 19.34 12.61 6.73 1.37 1.88 15.09   0.76 

* from 10 referenced samples x 4 stages 

The summary of developing calibration models for SMC using PLSR method and the RPD category 

are shown in table 7. 

B26 
B26 

B26 B26 

R1415, SMC BI 26:  

(0.15; 15.9%) 

R1415, SMC BII 26:  

(0.17; 14.9%) 

R1415, SMC BIII 26:  

(0.19; 12.9%) 

R1415, SMC BIV 26:  

(0.18; 14.3%) 
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Table 7. Summary of PLSR results for SMC calibration models 

PLSR results 
Nglipar (G) 

SMC model 

Dlingo (B)  

SMC model 

Calibration samples 40 40 

Prediction samples 120 120 

Optimal factors 3 5 

R2
cal 0.76 0.97 

RMSEcal 0.50 0.21 

R2
val 0.61 0.73 

RMSEval 0.66 0.61 

SD 1.52 1.34 

RPD (SD/ RMSEval) 2.32 2.25 

RPD Criteria A (excellent) A (excellent) 

 

The Vis-NIR predicted values using PLSR for SMC are described as regression models in figure 8. 

The data points of the measured moistures (reference) and the predicted are indicated excellent model 

performance (RPD > 2). The two soils measured by the Vis-NIR reflectance sensor and by the 

gravimetric method are compared, and they are highly correlated (R2 = 0.76 and 0.97).  

 

   

Figure 8. The regression model of soil moisture content at Nglipar and Dlingo 

The better results obtained by using the PLSR method are clearly because PLSR takes advantage of 

the use of the entire spectral signature [24]. The regression coefficient plotted in figure 9 shows the 

investigated spectrum that should be considered important for the prediction of SMC. The size of the 

regression coefficients represents the importance of the absorption band. 

 

  
Figure 9a. The regression coefficients of SMC model for Nglipar (G)  



10

1234567890 ‘’“”

AESAP 2017 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 147 (2018) 012038  doi :10.1088/1755-1315/147/1/012038

 

 
Figure 9b. The regression coefficients of SMC model for Dlingo (B)  

3.3.  Temporal and spatial map of SMC variability 

The prediction value of SMC was then applied to generate the temporal and spatial map of SMC. The 

inverse distance weighted (IDW) method was applied to do the spatial interpolation. figure 10 and 11 

show the SMC variability map of Nglipar and Dlingo for each stage. The SMC at Nglipar of all stages 

were dominantly about 14-16% and a small part about 12-14% at the generative stage. The SMC of G25 

at vegetative stage and after harvesting were the lowest (11%). It had been noticed that soil at G25, 

besides the whitish color soil, it also had very shallow topsoil over the bedrocks compared to 

surrounding soils. These conditions might cause differences in soil properties regarding moisture 

storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The temporal and spatial map of SMC variability at Nglipar (G) 

The SMC at Dlingo was more varied than at Nglipar with the range from 12 to 18%. The SMC 

decreased gradually from before planting to the generative stage. The runoff over the terrace might be 

the factor that affected the decreasing of SMC, besides the increasing crop water requirement at the 

generative stage. 

    

10 12 14 16 18% 

0 10m 
 

Before planting Vegetative stage 

Generative stage After harvesting 

upper terrace 

lower terrace 

G25 
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Figure 11. The temporal and spatial map of SMC variability at Dlingo 

4.  Conclusions 

The performance of Vis-NIR reflectance spectroscopy to estimate soil moisture content (SMC) using 

PLSR method resulted in satisfactory level. It was proven from the RPD values that the calibration 

models were “excellent” to predict SMC. Dlingo prediction model had higher accuracy compared to 

Nglipar. In this study, soil proximal sensing using Vis-NIR spectrum was a reliable tool for the 

prediction of SMC of unknown soil samples. Different pretreatment process should be performed to 

improve the correlations between the measured soil moisture content and the spectra. The temporal and 

spatial maps of SMC variability gave much information to be interpreted carefully due to many factors 

affect the SMC. They were useful in supporting the process of decision making in field management. 
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