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Abstract. The tangent stiffness method produces the strict equilibrium solutions using the
geometrical stiffness and element force equations. The method based on the principle of
stationary total potential energy can be applied to mesh optimization problems by using the
potential functions of element measurement as objective functions. In this study, three different
types of functions are examined with numerical examples. One is proportionate to the total area
of curved surface consist of triangle elements, and it gives minimal and isotonic surfaces.
Another is expressed as power functions of length of 1D elements, and it makes the total length
between nodes minimalize. The last one is to minimalize the square of difference between the
side lengths of triangle elements, and it may arrange the shapes of the elements equilateral
triangles.

1. Introduction

It is very important for non-linear structural analyses to use suitable and available mesh configuration
according to the purpose of the analyses. Plenty of investigations for “mesh optimization problem” have
been proposed since the computational technology such as FEM began to develop to be able to adopt to
complex non-linear phenomenon. General concept of mesh optimization is to minimize the objective
function concern with topology of corresponding structure, for example, length of elements can be a
typical target [1]. Moreover, the mesh optimization problem has analogic background as the
geometrically nonlinear problem, so there exist many proposals [2][3] to use the common scheme with
geometrically nonlinear analyses.

Authors have studied about geometrical nonlinear analyses using the tangent stiffness method in
which the geometrical stiffness caused by elements’ rigid body displacement are perfectly separated
from the element stiffness caused by elements’ own deformation. Therefore, the method produces the
equilibrium solutions that strictly adjust to the element behavior defined in the element force equation
with rapid and sure convergent process[4]. Furthermore, the element force equation can be derived by
differential calculus of the strain energy of the elements. Thus, if we can use some mechanical values
which are defined as potential of element measurement (after this, call it “the measure potential”) instead
of strain energy, the object of the analysis shall be minimalizing of the functional. For example, when
the measure potential is proportionate to the total area of triangle elements, the method will produce an
isotonic and minimal surface, and the authors have applied it to the form finding problem for pneumatic
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structures [5]. Furthermore, when the measure potential is power function of the length of line elements,
each node will be located to have shortest distance between two panel nodes next to each other, and this
definition of potential is available for form finding problem of tensegrity structures [6].

In this study, three different types of measure potential for mesh optimization are shown. The first
one and second one are proportionate to the total area and to the power of length, respectively. The last
one is to adjust triangular elements to equilateral shape, using the measure potential expressed by the
square total of difference of side length. The positioning of the elements by this measure potential is
effective for extremely large deformational analyses of membrane structures even when the wrinkle
occurs in some elements [7].

Two numerical examples are examined in this paper. One is to adjust the side length of triangular
elements on the initial curved surface for membrane or shell structures determined by the form finding
process using isotonic strain elements. The analysis is proceeded in 2 dimensional coordinate along the
tangent plane of object surface, and the solution that reduced the difference between side length could
be obtain with stable convergent process. The other is to examine adaptability when an extremely large
deformational analysis is proceeding simultaneously with the mesh optimization analysis. This example
discusses about comparison between two measure potentials of "the square total of difference of side
length " and "the power function of element length", and it became evident that the both measure
potentials give rational mesh division by renewing the tangent plane coordinate step by step, even when
the displacements of the surface are so large.

2. Tangent stiffness method for geometrical nonlinear analysis
The measure potential P is defined as a functional of element measurement s, and the element edge
forces are expressed as following.

oP

T os

Furthermore, the equilibrium equation between the nodal forces U in the common coordinate and
the element edge forces S in the local element coordinate can be expressed as following.

U=JS 2

Here, J is the conversion matrix between two coordinates. In case of geometrically nonlinear
analyses, the tangent stiffness equation can be derived by differential calculus of Eq(2).

83U = J8S +8JS = (K, + K, )ou 3)

S M

In which, Ky is the element stiffness and Kg is the tangent geometrical stiffness. du is nodal
displacement vector in general coordinate.

In case of the large displacement problems with the elements having real material, the measure
potential P is equal to the strain energy and Eq. (1) gives the element deformation including the material
behaviour in the local element coordinate. Therefore, K¢ in Eq.(3) can evaluate the geometrical non-
linearity caused by rigid body displacement of elements strictly.

On the other hand, in case of the mesh optimization problems as the pre-process of main analyses,
the measure potential P can be define depending on the purpose of the main analyses. Therefore, nodal
forces may be derived by direct differential calculus as:

oP
U=— 4
o “

As well as the tangent stiffness equation are also expressed as:
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3. Potential of element measurement for mesh optimization

Figure 1. A triangular element and its measurement.

In this study, three different types of measure potentials for mesh optimization are defined and used.
One has the measure potential proportionate to the area of triangular elements. Figure 1 shows its
measurement. The potential of an element numbered “i” is expressed as:

F=CA ©)

where, C is the constant corresponding to the product of the tensile stress and the thickness of the soap
film, and A; is the area of element numbered i. When the Eq.(6) is substituted to Eq.(1)-(3), the form of
the tangent geometrical stiffness K¢ in Eq.(3) becomes same as one of the triangular truss block. This
potential will give the isotonic carved surfaces.

Second one is line elements whose measure potential expressed as the power functions of elements’
own length:

P=Cl ™

where, C and 7 is the constant which can designated freely, and / is the element length. This potential is
available for the form-finding of tensegrity structures.
Third one is the potential by square total of side length difference of triangular elements.

P=C{(L=6) +(h=L) +(L-1)"} ®)

Therefore, this potential can be expected for each element to be closed to the shape of equilateral triangle.
Even if any potential of Eq.(6) to Eq.(8) was used, the tangent stiffness equation can be expressed by
superposition of Eq.(9).
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After convergent of the unbalanced forces by application of Newton-Raphson method, each node moved
to rational position on a designated surface.

4. Numerical examples

4.1. Minimization of element side length difference

Figure 2 shows a shape of initial plane and mesh division. And Figure 3 is a shape of carved surface
found by an isotonic stain analysis. Only the self-weight is loaded to each node under the boundary
condition to be fixed the nodes around four corners. This algorithm is to renew the non-stressed shape
of each triangular element in every iteration step. Therefore, the determined surface has equal strain all
around on it.

Mesh optimization by the measure potential by square total of side length difference (we call it
“Minimization of element side length difference”) is adopted to the found surface to be used as a
primary solution for a large deformational analysis of the membrane structure. To make use of the
performance of the constant strain membrane elements, conversion of its element edge forces to the
direction along each sides is most rational, as Ni(i=1,2,3) shown in Figure 1. However, flatter shape of
triangular element, in some cases(for example, [7]), causes the compressional side direction forces even
under the condition of tensional principal strains.

“Minimization of element side length difference” is proceeded in 2-D coordinate along the tangent
plane of the surface, and Figure 4 shows movement of each node and deformation of each element.
Because total area of the surface does not change between before and after of the analysis, it seems that
each node moved on the surface itself.

(L-L) +(4-L) +(L—1)
P+E+L

2

P,=

at

(10)

m
B; = ZPa ; m: Total number of elements (11)
i=1

Figure 5 is contour that indicates the deference of index by Eq.(10) between elements.
This index can express the difference between side lengths no concern with size of triangles. According
to Figure 5, P, is reduced in almost of elements, and total amount of P, in Eq.(11) is also reduced from
32.72 to0 30.60.
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Figure 4. Movement of each node and deformation of each element by the mesh optimization.
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Figure 5. Comparison of contour by difference of side length.
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4.2. Mesh optimization proceeding simultaneously with extremely large displacement analysis

Figure 6 shows the initial plane of square with 12m of side length. Form finding analysis of isotonic
surface is proceeded with the potential of Eq.(6) under the loading of constant air pressure to normal
direction of the surface. By application of the simultaneous control [8], which is an incremental
technique different from the arc length method, compulsory displacements are given on a control point
(shown in Figure 6) to normal direction of the surface. A path can be searched until the solutions with
very large involved volume by displacing the control point compulsorily, as shown in Figure 7.

In case of isotonic surface analyses, each element has no stiffness to tangent direction but to
normal direction of the surface. Therefore, each node should be fixed to tangent direction, or some
rational mesh optimization methods are required. In this study, the measure potential of Eq.(7) and
Eq.(8) are applied to tangent direction and are compared their performance. Namely, two cases of
following are examined.

Case A: Soap film elements derived by the measure potential of Eq.(6) are applied to
normal direction, and line elements derived by Eq.(7) is applied to tangent
direction, when C=1 and r=1. In this study, we call this mesh optimization
“Minimize of total element length”.

Case B: Soap film elements derived by the measure potential of Eq.(6) are applied to
normal direction, and “Minimization of element side length difference” by Eq.(8)
is applied to tangent direction, when C=1.

In both cases, the stiffness equations to normal direction and to tangent direction are solved
simultaneously and independently, and the coordinate which consist of 1% axis as normal direction and
2" and 3" axes as tangent direction is renewed in each iterative step of Newton-Raphson method.
Therefore, the large displacement analysis and the mesh optimization can be proceeded simultaneously.

Figure 8 and Figure 9 are the found surfaces by Case A and B respectively, when adopting the
rougher mesh division that a side is divided in 6. Furthermore, Figure 10 and Figure 11 are the surfaces
when adopting the denser mesh division that a side is divided in 12. 10m of total compulsory
displacement is given to the control point in each case.

According to Table 1 showing the comparison, Eq.(7) gives shorter total length of line between 2
nodes connected by each elements than Eq.(8). On the other hand, Eq.(8) makes smaller side length
difference of triangular elements than Eq.(7). Therefore, it can be concluded that the each measure
potential acts rationally, even if under the condition of extremely large displacement by using same
algorithm as the tangent stiffness method.
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Figure 6. Shape of initial plane and mesh Figure 7. Inner pressure-volume path.
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Figure 8. Determined form by measure potentials

of Eq.(7) with rougher division
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Figure 10. Determined form by measure
potentials of Eq.(7) with denser division

Figure 9. Determined form by measure
potentials of Eq.(8) with rougher division
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Figure 11. Determined form by measure
potentials of Eq.(8) with denser division

Table 1. Comparison of solution between Case A and B.

Division number of a side 6

12
Adopted potential to Case A Case B Case A Case B
tangent direction by Eq.(7) by Eq.(8) by Eq.(7) by Eq.(8)
Inner pressure[kPa] -0.08602 -0.08593 -0.08303 -0.08297
Pa in Eq.(10) 18.74196 16.33165 75.74562 67.02342
Total length of line 1166.43514 | 1184.67583 | 2358.368 2398.83
between 2 nodes [m]

5. Conclusions

In this paper, we proposed three element potential functions for mesh optimization of curved surface.
The first one is to be proportionate to the area of the triangle element, the second one is proportionate
to the element side length, and the last one is to be proportionate to the square sum of the side length
difference. The advantage of “Minimization of element side length difference” was discussed when it
is applied to a surface found by constant strain analysis. Furthermore, in case of isotonic curved
surface analysis until the decompression-expansion process with very large displacement, we
examined the performance of both of "Minimization of total element length" and "Minimization of
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element side length difference", when the sequential updating of the local coordinates to be composed
of one normal axis and two tangent axes at every node on the surface is adopted. The findings on the
features of each method are summarized below.

(1) Optimized nodal positions by application of "Minimization of element side length difference" to an
equilibrium solution determined by the constant strain analysis can be assumed to be on the curved
surface because of no changing of the total surface area, even if the local coordinate system having
two axes in the tangent direction is used without updating. For this example model, rationality of
"Minimization of element side length difference" became evident, because it can be judged that all
elements are approaching to the shape of equilateral triangle by checking the changing of the value
of the measure potential.

(2) Geometrically nonlinear analysis with extremely large deformation and the mesh optimization
analysis using the measure potential can be parallel procedure. On the isotonic form-finding analysis,
comparing "Minimization of element side length difference" with "Minimization of total element
length", it was found that both measure potentials are enough available for mesh optimization
regardless of the coarseness and minuteness of the mesh.

Consequently, the application of the measure potential to the algorithm of the geometrically nonlinear

analysis by the tangent stiffness method contributes the mesh optimization by choosing appropriate

potential function. It is expected that some more different types of measure potentials for different
objectives will be developed in near future.
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