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Abstract. A model of elastic body, including local curvature of elementary volume, is matched 

with a nonlocal model with a linear structural parameter in the differential approximation. The 

problem on deformation of rock mass around a circular cross section tunnel is solved 

numerically. The contours of the calculated stresses are plotted. It is shown that inclusion of 

local bends in the model results in expansion of influence zone of the tunnel and reduces stress 

concentration factor at the tunnel boundary.  

1. Introduction  

The problem on deformation of rock mass surrounding a tunnel is one of the basic problems in 

geomechanics. Many formulations of the problem have been analyzed [1–5]. This problem is very 

attractive for the use in the theoretical research as there are known exact solutions in some limiting 

cases. Such solutions can be test solutions for more complex models, for instance, taking into account 

internal structure of rock mass [6–8]. Internal structure is one of the fundamental properties of rocks 

and is a source of numerous equilibrium states and capacity of rock mass to accumulate some energy 

of external impact in the form of internal self-balancing stresses [9–11].  

There many ways of taking into account internal structure of rock mass. The mathematical models 

with the internal variables in [12–14] describe behavior of the medium in terms of its structural 

elements. The non-Archimedean analysis methods are used in [15, 16] to describe multi-scale rock 

mass and its deformation and failure.  

It is noteworthy that models of media having internal structure are used in the other research 

areas, such as mechanic of composites and nanomaterials, dynamics of crystal lattices [17, 18].  

In this paper, in the framework of the linear elasticity model with a structural parameter [19, 20] 

and taking into account local curvature of a medium, the authors solve the problem on deformation of 

rock mass surrounding a mined-out tunnel.  

2. Mathematical model  

Let us use the approach from [19]. Let a discrete number of elastic particles seat at the points of a 

square lattice (plain-strain deformation). Let 21, LL —linear dimensions of the deformation domain; 

nm, —particles that fall on 21, LL , i.e. nLmL // 21  —linear dimension of particle (diameter); 

nmN  —total number of particles. In a general case, at the particle contacts, it is possible to 

introduce sliding by plasticity laws, and dry or viscous friction. In case under analysis, we discuss an 

elastic model and assume that sliding is absent at the particle contacts. It is also assumed that the point 
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moments are not transferred through the contacts. Then, for each particle (with a number i ), four force 

vectors T  and four displacement vectors u  will be determined at the contact points iiii DCBA ,,,  

with the neighbor articles (Figure 1). One vector conforms with two scalar components. Temperature 

and other parameters can be included additionally. The total number of the scalar unknowns is: 

nmN 224  —displacements at the contacts; nmN 224  —forces at the contacts; nm 44  —

displacements at the boundaries; nm 44  —forces at the boundaries. All in all, there are 

nmN 448   unknowns.  

For each out of N  particles, there are two equations of equilibrium and one equation of moment 

of forces, which makes total N3  equations. Then, at each of nm 22   boundary contacts, two 

conditions should be set (either in terms of forces or displacements, or their combination); i.e. there 

are nm 44   conditions. Regarding constitutive equations, the four points iiii DCBA ,,,  agree with 

the four vectors of displacements—8 degrees of freedom. Constitutive equations can only include such 

combinations that are independent of translation and rotation of particles, which means that three 

degrees of freedom should be withdrawn. Accordingly, we have five invariant combinations of 

displacement. There are also 8 degrees of freedom for the forces. The vector of sum of forces and the 

moment should equal zero. So, we have five degrees of freedom as a result. Consequently, the 

constitutive equations should relate five invariant combinations of displacements with five force 

characteristics. There should be five equations for a particle and N5  equations for all particles. We 

have nmN 448   equations all in all. The system is closed and reduced to nmN 448   

algebraic equations for nmN 448   unknowns.  

In this manner, we need five constitutive equations for elementary volume. On the other hand, 

there are three constitutive equations for an elastic body. This means that the classical theory contains 

assumptions that have equal strength of two equations. Moreover, these equations are of equal 

significance as in the Hook law. Let us formulate such equations in explicit form.  

We select five invariant combinations of displacements capable to be included in the constitute 

equations. The number of choices is unlimited. In out case, we take the closest variant to the linear 

elasticity:  
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where ,E –Young’s modulus and Poisson’s ratio; l2 –linear dimension (diameter) of particle;  —

structural parameter dimension of which is inversely proportional to dimension of stresses. The first 

three equations are the discrete analog of the Hook law. The last two equations are not formulated 

explicitly in the classical theory. Though, there is information about them. The classical theory 

involves (as a matter of course) the postulate on diffeomorphism [21]. More simply, it is assumed that 

all functions are sufficiently smooth. This means that any functions can locally be presented as a linear 

function, for instance: 2121111 xaxau  , 2221122 xaxau  , where 2211,...,aa —const. Placing this 

representation in (1) yields 0 . The contrary is valid, too. Consequently, the two equations from 
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(1) are “hidden” in the postulate of diffeomorphism. When 0  we obtain a linear elasticity theory 

with a structural parameters, and Eq. (1) describe local bends.  

The system of equations of equilibrium is given by:  
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Here, 21, XX —mass forces in the center of particle. The first two equations describe the zero main 

vector of forces and the third equation—zero main moment of forces.  

The conditions of interaction of grains (total adherence) take on form (Figure 1):  
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Figure 1. Internal structure of the medium: 

arrangement of contacts of particles.  

Figure 2. Problem on deformation of 

rock mass around a tunnel.  

3. Problem formulation and calculation results  

Regarding the formulation of the boundary value problem, let the calculation domain with the 

dimensions 21, LL  surround a tunnel with a radius R  (Figure 2). We present the calculation domain 

as a set of discrete particles with a radius l . The calculation domain is subjected to gravitational and 

tectonic compression, and the tunnel boundary is free from stress. The boundary conditions at the 

boundary of the calculation domain are given by:  
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Similarly, at the boundary of the tunnel:  

 
;0

33


 ntnn tt   (6) 

where ntnn tt ,  denote, respectively, the normal and shear forces at one of the points DCBA ,,, . 

The system (1)–(6) is a closed system of algebraic equations to be solved numerically using the 

Gauss method.  
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We select the dimensionless parameters of the problem (the values having dimension of length are 

related to 1L , the values having dimension of stress—to p ): 

 .26,0,1,1,25,0,2000,4,0,1 21  RLLEqp   (7) 

In the analysis of the influence exerted by the structural parameter  , it is first assumed that 

0 , which is case of the classical linear elasticity theory. The resultant contours of the vertical 22t  

and maximal shear 
2
12

2
2211max 4)(5.0 ttt 

 
 stresses calculated from (1)–(6) are shown in 

Figures 3a and 4a, respectively. The structure has no influence in this case, the local bends are absent. 

The highest concentration of the stresses, both 22t  and max ) is observed in comparatively small zones 

at the side boundaries of the tunnel.  

(а) (b) 

  

(c) (d) 

  

Figure 3. Contour lines of the stress 22t
 
depending on the structural parameter: (a) 0 ;  

(b) 
4105  ; (c) 

3105  ; (d) 
2105  . 

Gradual increase in the value of the structural parameter due to local curvature results in 

considerable redistribution of stresses in the adjacent rock mass. It is seen that the stresses 22t , as   is 

increasing, concentrate in the consistently expanding rock mass zones in the horizontal direction 

(Figures 3b–3d). The maximal concentration of 22t  changes from 8.222 t  (Figure 3a) to 
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9.122 t  (Figure 3d). The maximum shear stress max  behaves similarly: it concentrates in the 

successively expanding zones leftward and rightward the tunnel in the vertical direction (Figures  

4b–4d). The maximum concentration of max  changes from 5.1max   (Figure 4a) to 0.1max   

(Figure 4d). In this manner, with the local curvature taken into account in modeling, the maximum 

concentration of stresses is “smeared”, literally, in rock mass surrounding a tunnel.  

(а) (b) 

  

(c) (d) 

  

Figure 4. Contour lines of the stress max
 
depending on the structural parameter: (a) 0 ; 

(b) 
4105  ; (c) 

3105  ; (d) 
2105  . 

4. Conclusion  

In the models of elastic deformation of rock mass surrounding a tunnel with taking into account local 

bends, the influence zones of the tunnel is expanded and the stress concentration factor at the tunnel 

boundary is lower.  
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