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Abstract. The article focuses on the inclined rigid wedge indentation into a rigid-plastic half-

plane of rocks with the Mohr–Coulomb-Mohr plasticity. The limiting loads on different sides 

of the wedge are determined versus the internal friction angle, cohesion and wedge angle. It is 

shown that when the force is applied along the symmetry axis of the wedge, the zone of 

plasticity is formed only on one wedge side. In order to form the plasticity zone on both sides 

of the wedge, it is necessary to apply the force asymmetrically relative to the wedge symmetry 

axis. An engineering solution for the asymmetrical case implementation is suggested. 

The problem on destruction of a material by a wedge is the basic in mining [1–5]. It has been solved in 

elasticity [6–7] and in plasticity [8–10]. The most commonly used approach is rigid–plastic body when 

elastic strains are neglected and fully plastic strains are the framework. A wedge can be indented along 

a straight line and at an angle. The straight-line indentation is when the wedge faces have the same 

angles with the surface of a body the wedge penetrates. The inclined indentation when the inclines of 

the wedge faces relative to the body are different on all sides. Both direct and inclined inundation 

processes have been studied [2–3 and 8–11]. The objective was to determine forces that make the 

wedge penetrate in the body.  

Unlike the earlier research, the present paper authors aim to determine loading conditions when a 

wedge moves in the preset direction. In this case, it is required to control forces and moments applied 

to the wedge. Let us discuss the case of plain strain deformation of rock mass under perfectly rigid 

interaction between a nondeformable wedge and a perfectly smooth surface. These requirements are 

traditional and can be withdrawn by adding the mathematical model with the contact friction and 

considering more complex deformation state. We take this simplest example to understand the essence 

of the problem. 

So, we analyze the problem on the inclined indentation of a smooth wedge with a nose angle 2  

and the axis of symmetry inclined at the abscissa axis at a constant angle   (Figure 1). 

It is assumed that the half-lane material is a medium under limit equilibrium by the Mohr–

Coulomb condition:  

   Knn
n

  tgmax , (1) 

where  —internal friction angle; K —cohesion coefficient; n —normal to an arbitrarily oriented 

plane in the coordinate zxOy . In the principal axes of the stress tensor, (1) is rewritten as:  
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where 321 ,,  —principal stresses of the tensor T . The medium equilibrium equations are:  

 0 yx xyx  , 0 yx yxy  . (3) 

 

Figure 1. Schematic indentation of wedge with the nose angle 2  in the rigid–plastic 

half-plane. 

After substitutions    2cos2 Tyx  ,  2sinTxy ,     2yx , where 

  231  T ,   231   ,  yxxy   22tg , 321   , —angle between 

the first direction for T  and the x  axis, the stresses xyyx  ,,  are related to two independent 

values    yxyx ,,,  : 
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 (4) 

Substituting (4) in (3) results in two equilibrium equations:  

      0cossin22cossin2sin  dydKdxdyd   (5) 

along two coordinate lines with the equations:  

    24tg
1

 dxdy ,    24tg
2

 dxdy . (6) 

It follows from (6) that that the characteristics (lines) are arranged symmetrically relative to the 

first principal direction.  

In order to determine limiting loads on the right-hand and left-hand faces of the wedge (Figure 1), 

we take first the right-hand face AC depicted in Figure 2 with a segment CE  showing the free 

boundary. At the boundary CE , the normal stress 0y  and the shear stress 0xy . 

Consequently, the normal to the boundary CE  and the tangent (axis X ) to this boundary are the 

principal directions. Inasmuch as the segment CE  undergoes compression under the wedge 

penetration, 01   y , 03  x , which means that the first principal; direction is 

perpendicular to the axis X . In other words, the angle 2  and the characteristics are the line 

with the equations:  

  dxdy 243tg   ,  dxdy 24tg   . (7) 
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Figure 2. Determination of limit load on the right-hand face of the wedge indenter: 1, 3—

directions of the principal stresses.  

It is assumed that the angle   is constant in the triangle CEF , i.e. the lines (7) are the straight 

lines from CE  to AC  and are described by the equations:  

   const24tg  xy  . 

Inasmuch as (2) should be valid in the whole triangle CEF , under 31 ,0   x , we obtain 

  sin1cos23  K ; i.e.   231    in CEF  is:  

   sin1cos  K . (8) 

In the same manner, we find stress state in the triangle ACG  (Figure 2). In this case, the 

principal directions are the normal to AC  and the tangent. The face is inclined to the axis X  at an 

angle   . It is assumed that the pressure long the normal to AC  (negative) is higher in absolute 

value than along AC , i.e. the first principal direction in T  is oriented along AC . In other words,   

is equal to   . The pressure applied to the face AC  is denoted by 3np . Let us express np  in 

terms  . From the limit equilibrium condition (2), we have:  

    cossin13 K . (9) 

This means that finding 3np  requires calculating   on AC . As previously,   is assumed 

constant in the triangle ACG , which implies uniform stress state.  

We suppose that the fields ACG  and CEF  are connected by a centered field with the polar 

coordinate system with the pole C . Meanwhile:  

  sin,cos  yx , (10) 

where the   is related with  :  

 243   . (11) 

When 2  the angle   equals 24   , when    

  243 . 

  dddydddx  cossin,sincos , (12) 

where dydddx ,,,  —differentials of functions. Placement of (12) in (7) brings the coordinate 

lines:  

 
 0tg

0,0
 

 ed , 

where 240   . At   243  we have 
   2tg

0 e , which 

means that   for this value of  is less than 0  for 240   . 
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Then, we analyze the relation in the characteristics (5). We have  dd , 

       ctg2tg24tgdxdy . Substitution of this value in (5), 

after transformations, allows a relation: 

 0
cos

2

cossin


 





 d

K

d
; 

the latter is integrated and yields:  

    0tg2
cossincossin

 
 eKK . 

The integration constant is found from the condition that at 240    the value of 

  coincides with the value of   from (8). In this case, at   243 , we have:  
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K
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. 

Using (9), find 3  at AC : 

 
 

















  








 2tg2

3
sin1

sin1
1

sin

cos
e

K
. (13) 

Multiplying (13) by the length of AC gives the force required to be applied to AC  to obtain stress 

fields as in Figure 2.  

For another thing, in the analysis of the stress field to the left of the line AB in Figure 1, it is 

assumed that it is inclined to the axis x  at an angle    less than 2  (otherwise we have the 

situation des cribbed above). In so doing, we obtain two stress fields HDB and ADB (Figure 3).  

 

Figure 3. Stress fields HDB  and ADB  separated by a straight line with the unknown 

angular coefficient tg .  

The stress state is assumed constant (uniform) in the triangle HDB :  

 31 ,0,0   xyxy ,     K 2tgcos2 3131  ,  (14) 

   sin1cos23  Kx . 

The same computations are made for the triangle ADB . In this case,  
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   ,  2cosTx  ,  2cosTy  ,  2sinTxy  , (15) 

where   231  T ,   231   . By the Mohr–Coulomb condition, 

 sincos  KT . Therefore, instead of (15), we have:  

  

 













.2cossin12coscos

,2cossin12coscos

,2sinsin2sincos







K

K

K

y

x

xy

 (16) 

Figure 3 shows the straight line with the angular coefficient tg  separating the fields (14) and 

(14). To connect the fields, we have the condition of continuity of the Cauchy vector when intersecting 

this line (third Newton law). Introduce the vector of the normal n  to DB :   cossin n  and 

obtain:  

 
















.cossincossin

,cossincossin





yxyyxy

xyxxyx
 (17) 

If the stress fields to the left and right of DB  in Figure 3 are given the plus and minus signs, 

respectively, we have:  

 
 

 





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
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 (18) 

The system (18) is a uniform system of two equations to determine two unknown values: sin  

and cos . In order that solution exists, it necessary that the determinant of the system (18) is zero. 

With the zero determinant, the stress   in ADB  in Figure 3 is given by:  

 
   







sin1cos

sinsin1cos2

sin1cos

cos2sincos
2222











K
, (19) 

and the angle   is found from (18), e.g.:  

     xyyy tg . (20) 

The calculation of 3  at AB  use the Mohr–Coulomb condition:  

    cossin13 K . (21) 

Comments. It is apparent that the limit loads on the right-hand size (13) and left-hand side (21) of 

the wedge are different. Furthermore, the forces are different (as the stresses are multiplied by 

different areas). This fact means that under the force applied to the wedge along the wedge axis of 

symmetry, the material where the limit force is lower (on the left-hand side of the wedge in Figure 1) 

will ‘yield’ first. Naturally, to reach the plastic deformation of the material on the left and right of the 

wedge, it is required to apply the force not along the axis of symmetry of the wedge but at a certain 

angle connected with the formulas (13), (21) and the lengths of the faces AB  and AC  of the wedge 

in Figure 1. One of the possible diagrams of nonsymmetrical application of force along the wedge axis 

is shown in Figure 4.  

Conclusion  

1. Limit loads on a wedge indented in rock mass at an angle have been determined.  
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2. The authors have suggested the scheme of nonsymmetrical loading of a wedge during its 

inclined indentation.  

 

Figure 4. Different forces 1F  and 2F  applied to ‘constituents’ 1 and 2 of a wedge. 
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