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Abstract. The authors determine stress and deformation in a heterogeneous rock mass at the 
preset displacement and Cauchy stress vector at the boundary of an underground excavation. 
The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is 
shown. It is found that regions of tension and compression alternate at the excavation 
boundary—i.e. zonal rock disintegration phenomenon is observed.  

1. Introduction  
In solid mechanics and, specifically, in rock mechanics, preferable formulation of boundary value 
problems are: setting the Cauchy stress vectors at the known boundaries of a body, setting 
displacement vectors at the boundaries and setting the Cauchy stress vectors at some boundaries 
and displacement vector at the other boundaries (combined problem) [1–3]. In elasticity, the 
theorems of existence and uniqueness of solution are proved [4–5]. This study addresses such 
formulation of a boundary value problem when the Cauchy stress vector and the displacement 
vector are set at the same boundary. The problem includes the simplest boundary in the form of a 
circumference and the preset boundary conditions are independent of coordinates.  

2. The problem of the theory of elasticity for rock mass surrounding a tunnel  
Let there be a tunnel with a radius a  (Figure 1) with the preset boundary conditions given by:  
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Figure 1. Tunnel with a radius a  and the Cauchy stress vector and displacement vector 
preset as the boundary conditions.  
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Rock mass around the tunnel is in elastic state. It is required to find distribution of stresses, strains 
and displacement around the tunnel.  

The problem is solved by integration of a second-order differential equation under the boundary 
conditions (1). The differential equation in terms of stresses is given by:  

 0=
−

+
rdr

d rr θσσσ
, (2) 

the Hooke low for the plain strain:  
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 )1(2 νµ −= E , )1()21(2 νν +−= Ek . 

The Cauchy relations:  

 
dr
dur

r =ε , 
r
ur=θε . (4) 

Placement of (4) in (3), (3) in (2) brings a second-order differential equation in terms of radial 
displacement ru : 

 01
22

2

=−+
r
u

dr
du

rdr
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The unknown is Eq. (5). Its solving needs setting the function ( 0uur −= ) and the normal 
derivative (coordinate r ) at the boundary; the coordinate derivative r  is: 
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In view of (1), the condition (6) is re-written as:  
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The general solution of (5) is presented as a sum 
r

CrCur
2

1 += , where 1C , 2C —arbitrary 

constants.  
From the initial conditions (1), (7), the constants:  
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Then:  
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It follows from (8), (9) that when ar ≥  the displacement ru  is negative. At the same time, the 
strain rε  can always be positive, e.g. at 0=p , ∞=k . This fact seems unusual as under longitudinal 
and transversal compression of rock mass along the axis r  the strain rε  is positive, i.e. tensile. 

Actually, there is nothing unusual as the strain 
r

ur=θε  is negative (for ru  is negative) while for an 

incompressible material 0=+ θεε r , thus, θεε −=r .  
To sum up this Section, it follows from (1), (7) that setting the stress vector at the tunnel boundary 

is equal to setting the normal derivative of the function of displacement at this boundary.  
The equation (5) yields the formula to determine rσ  at ‘infinity’: 
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Near the tunnel, in the radial direction, always tension takes place, which is the source of the 
zonal disintegration phenomenon [6, 7].  

3. Problem solving with due regard to inhomogeneous distribution of shear modulus  
The Cauchy problem is formulated so that to take into account inhomogeneous distribution of shear 
modulus around a cylindrical tunnel. Let a rock mass around a tunnel with a radius 0r  have 
inhomogeneous distribution of shear modulus:  
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where f —arbitrary function of the radial coordinate.  
The solution range is 0rr ≥ . We have the second-order linear differential equation with the 

variable coefficients to determine u  ( ruu = ): 
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We introduce (11) with a logarithmic coordinate ξ  and a function )(ξP  given by:  
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In this case, from (11) we have:  

 0)(2

2

=−







−+ uu

d
duP

d
ud

ξ
ξ

ξ
. (13) 

Reduce the order of the differential equation (11) by introducing a new function:  

 u
d
duv −=
ξ

. (14) 

From (13) with regard to 914), we have the system of the first-order linear differential equations 
for finding the functions v  and u : 
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The system (15) is solved analytically. First, from (13), it is found that:  
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where 0v —the value of v  at the boundary 0rr = . Later on, from the second equation of (13), we find 
the function u :  
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where 0u —the value of the displacement u  at the boundary 0rr = . 

It is noteworthy that (16) is a general solution of Eq. (13), where 0u , 0v —constants. Let us 
analyze the case when the shear modulus µ2  in rock mass around a tunnel changes by the law:  

 ))2sin(1)(( 0 ξπµµ nkk ℵ++=+ ; (17) 

here, n  defines the number of ‘blocks’ in the range of the coordinate ξ  from 0  to 1 (the radius r  
varies from 0r  to 0rer = , where 718.2≈e ). Substitution of (17) in (12) yields 

)2sin(1
)2cos(2)(

ξπ
ξππξ

n
nP

ℵ+
ℵ

= . Having integrated the first equation (15), we have:  
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Finding )(ξu  needs using (16), i.e. taking integral of the function ))2sin(1/(2 ξπξ ne ℵ+− . 
Having that the parameter ℵ  in (17) changes from 0 to 1 and 1|)2sin(| ≤ξπ n , we expand the 
function ))2sin(1/(1 ξπ nℵ+  in an infinitely decreasing progression. In this case:  
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The unknown integral is presented as a sum of integrals: ∫ − ζξ de 2 , ∫ − ζξπξ dne )2sin(2 , 

...,)2(sin22∫ − ζξπξ dne  with the coefficients ...,,,,1 32 ℵ−ℵℵ− . Each integral is calculated 

using the formula of integration by parts [8]. 
Then, we find the connection between the constants 0u  and 0v  in (16). It is assume that the 

tunnel boundary is stress-free, i.e. 00 ==ξσ r . In this case:  
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Poisson’s ratio. The final expression for )(ξu  is given by:  
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Figure 2a shows the curve of the relative displacement 0/)( uu ξ  and the logarithmic 

coordinate ξ : up to the value 8.0≈ξ  the derivative 0/)( uu ξ  of the coordinate ξ  is negative, i.e. 
the material experiences tension in the line of the radial coordinate in the range of ξ  from 0 to 0.8. 
Later on, after 8.0≈ξ , he derivative becomes positive, which means compression of the material in 
this domain ( 8.0≥ξ ).  

 
Figure 2. (a) Relative displacement 0/)( uu ξ  versus logarithmic coordinate ξ  at 5.0=ℵ , 

3.0=ν , and 5=n ; (b) radial stress 00 / kur rσ  versus logarithmic coordinate ξ  at 5.0=ℵ , 
3.0=ν , 5=n .  

On the interval ]8.0;0[∈ξ , the derivative can be both positive and negative, i.e. at the tunnel 
boundary, the zones of tensile and compressive strains alternate—this is a zonal disintegration of rocks 
around the tunnel [6]. 

With the known displacements, the radial stress is found using the Hook law. In this case, the 
expression for the radial stress will take on form:  

 ξξ
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Below in the article, the numerical solution of Eq. (15) is presented. The second-order differential 
scheme is given by:  

 0)(
2

)(
2

11
2

2
12 =−−

−
+

+−
++

+++
ξξ

ξξξξξ ξξ uuP
h

uu
P

h
uuu

. (22) 

The initial conditions are described by (19).  
Figure 3 depicts the relative displacement 0/)( uu ξ  versus the logarithmic coordinate ξ  at 

5.0=ℵ , 3.0=ν , and the number of blocks is 5=n  (similarly to Figure 2a). The solid line is the 
analytical solution using (19), the points show the numerical solution using (22). Figure 3 illustrates 
total coincidence of the analytical and numerical solutions.  

(a) (b) 
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Figure 3. Relative displacement 0/)( uu ξ  versus logarithmic coordinate ξ  at 5.0=ℵ , 

3.0=ν , and 5=n . Solid line–analytical solution (19); points—numerical solution (22).  

In the same manner, the problem on the Young modulus versus radius is solved. In this case, 
instead of (11), we have:  
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The Cauchy conditions:  
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The problem (23), (24) is solved numerically.  

4. Conclusion  
The problem on stress state in rock mass around a cylindrical tunnel with the Cauchy conditions and 
inhomogeneous distribution of shear modulus has been analytically and numerically solved.  

It is shown that zones of tensile and compressive strains alternate in adjacent rock mass, which the 
zonal disintegration phenomenon in rocks.  
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