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Abstract. The integer solution of diophantine equations 𝑥2 − 𝐷1𝑦2 = 𝑚, (𝐷1 ∈ 𝑍+, 𝑚 ∈ 𝑍) 

and  𝑦2 − 𝐷2𝑧2 = 𝑛, (𝐷2 ∈ 𝑍+, 𝑛 ∈ 𝑍)  is a matter of great concern. Researchers study for 

different 𝑚,𝑛 and 𝐷1, 𝐷2 , and obtain some correlation results as follows. 

When 𝑚 = 1 ,𝑛 = 1 , the diophantine equations turns into 𝑥2 − 𝐷1𝑦2 = 1 and  𝑦2 − 𝐷2𝑧2 =
1.At present, there are only a few conclusions on it, see Ref [1] and [2]. 

When 𝑚 = 1,𝑛 = 4, the diophantine equations turns into 𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 4. 

For even numbers 𝐷1, 𝐷2, the integer solution see Ref [3] - [9]. 

When 𝑚 = 1,𝑛 = 16, the diophantine equations turns into 𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 =
16 .The previous conclusions see Ref [10]. 

When 𝑚 = 1,𝑛 = 9, the diophantine equations turns into 𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 9. 

Up to now, there is no relevant result on the integer solution of (5), this paper mainly discusses 

the integer solution of (5) when  𝐷1 = 7, 𝐷2 is an even number. 

1. Introduction 

The integer solution of diophantine equations 

𝑥2 − 𝐷1𝑦2 = 𝑚, (𝐷1 ∈ 𝑍+, 𝑚 ∈ 𝑍) and  𝑦2 − 𝐷2𝑧2 = 𝑛, (𝐷2 ∈ 𝑍+, 𝑛 ∈ 𝑍)           (1) 

is a matter of great concern. Researchers study for different 𝑚 ,𝑛  and 𝐷1, 𝐷2  , and obtain some 

correlation results as follows. 

When 𝑚 = 1,𝑛 = 1, diophantine equations (1) turns into: 

𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 1                                            (2) 

At present, there are only a few conclusions on (2), see Ref [1] and [2]. 

When 𝑚 = 1,𝑛 = 4, diophantine equations (1) turns into: 

𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 4                                          (3) 

For even numbers 𝐷1, 𝐷2, the integer solution of  (3), see Ref [3] - [9]. 

When 𝑚 = 1,𝑛 = 16, diophantine equations (1) turns into: 

𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 16                                     (4) 

The previous conclusions on (4), see Ref [10]. 

When 𝑚 = 1,𝑛 = 9, diophantine equations (1) turns into: 

𝑥2 − 𝐷1𝑦2 = 1and  𝑦2 − 𝐷2𝑧2 = 9                                     (5) 
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Up to now, there is no relevant result on the integer solution of (5), this paper mainly discusses the 

integer solution of (5) when  𝐷1 = 7, 𝐷2 is an even number. 

2. Key lemma 

Lemma 1[11] Let 𝑝 be an odd prime number, there is no integer solution of the diophantine equation 

𝑥4 − 𝑝𝑦2 = 1 except 𝑝 = 5, 𝑥 = 3, 𝑦 = 4 and 𝑝 = 29, 𝑥 = 99, 𝑦 = 1820. 

Lemma 2[12] There is 1 sets of solutions of the diophantine equation a𝑥4 − 𝑏𝑦2 = 1  at most 

when a is a square number which is greater than 1. 

Lemma 3[13] Let 𝐷 be a square-free positive integer, then the equation 𝑥2 − 𝐷𝑦4 = 1 has two 

sets of positive integer solutions (𝑥, 𝑦) at most. Furthermore, the necessary and sufficient condition of 

it is 𝐷 = 1785  or 𝐷 = 28560 , or 2𝑥0  and 𝑦0  are square numbers where (𝑥0, 𝑦0)   is the basic 

solution of  𝑥2 − 𝐷𝑦4 = 1. 

Lemma 4[14] Suppose that all the integer solution on Pell equation 𝑥2 − 7𝑦2 = 1  could be 
(𝑥𝑛, 𝑦𝑛), 𝑛 ∈ 𝑍+, let 𝑚, 𝑘 ∈ 𝑍+ and 𝑔𝑐𝑑(𝑚, 𝑘) = 𝑑, then the following conclusions are established: 

(I) 𝑔𝑐𝑑(𝑥𝑚, 𝑦𝑘) = 𝑦𝑑 . 

(II) 𝑔𝑐𝑑(𝑥𝑚, 𝑥𝑘) = 1 if 2|
𝑚𝑘

𝑑2 , or else 𝑔𝑐𝑑(𝑥𝑚, 𝑥𝑘) = 𝑥𝑑 when 2 ∤
𝑚𝑘

𝑑2  . 

(III) 𝑔𝑐𝑑(𝑥𝑘 , 𝑦𝑚) = 1 if 2 ∤
𝑚

𝑑
. 

Lemma 5   Suppose that all the integer solution on Pell equation 𝑥2 − 7𝑦2 = 1  could be 
(𝑥𝑛, 𝑦𝑛), 𝑛 ∈ 𝑍, for the arbitrary 𝑛 ∈ 𝑍, it has the following properties on (𝑥𝑛, 𝑦𝑛): 

(I) 𝑥𝑛 is a square number if and only if 𝑛 = 0. 

(II)
𝑥𝑛

8
 is a square number if and only if 𝑛 = 1 or 𝑛 = −1. 

(III) 
𝑦𝑛

3
 is a square number if and only if 𝑛 = 0 or 𝑛 = 1. 

Proof: (I) Let 𝑥𝑛 = 𝑎2, we will get 𝑎4 − 7𝑦2 = 1, from Lemma 1 we can get there are only 2 integer 

solution (𝑎, 𝑦) = (±1,0) on 𝑎4 − 7𝑦2 = 1 , so 𝑥𝑛 = 1, 𝑛 = 0. On the contrary, it also holds. 

(II) Let 
𝑥𝑛

8
= 𝑎2, we will get 64𝑎4 − 7𝑦2 = 1, from Lemma 2 we can get there are only 4 integer 

solution (𝑎, 𝑦) = (±1, ±3) on 64𝑎4 − 7𝑦2 = 1 , so 𝑥𝑛 = 8, 𝑛 = 1 or 𝑛 = −1. On the contrary, it 

also holds. 

(III) Let 
𝑦𝑛

3
= 𝑏2, we will get 𝑥2 − 63𝑏4 = 1, from Lemma 3 we can get there are only 6 integer 

solution (𝑥, 𝑏) = (±1,0), (±8, ±1)  on 𝑥2 − 63𝑏4 = 1  , so 𝑦𝑛 = 0  or 𝑦𝑛 = 3 . 𝑛 = 0  or 𝑛 = 1 . 

On the contrary, it also holds. 

3. Proof of main theorem 

By using elementary method such as congruence, the integer solution of the diophantine equations on 

𝑥2 − 7𝑦2 = 1 and  𝑦2 − 𝐷𝑧2 = 9 can be obtained. 

3.1 Theorem  

Let 𝑝𝑠(1 ≤ 𝑠 ≤ 4)  are diverse odd primes, 𝐷 = 2𝑘𝑝1
𝑎1 ⋯ 𝑝𝑠

𝑎𝑠(𝑎𝑖 = 0 𝑜𝑟 1,1 ≤ 𝑖 ≤ 4, 𝑘 ∈ 𝑍+) , 

then the diophantine equations  

𝑥2 − 7𝑦2 = 1 and  𝑦2 − 𝐷𝑧2 = 9                                              (6) 

(i) has common solution  (𝑥, 𝑦, 𝑧) = (±8, ±3,0) and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±2024, ±765, ±48) when 𝐷 = 2 × 127. 

(ii) has common solution  (𝑥, 𝑦, 𝑧) = (±8, ±3,0) and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±2024, ±765, ±24) when 𝐷 = 23 × 127. 

(iii) has common solution  (𝑥, 𝑦, 𝑧) = (±8, ±3,0) and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±2024, ±765, ±12) when 𝐷 = 25 × 127. 

(iv) has common solution  (𝑥, 𝑦, 𝑧) = (±8, ±3,0) and nontrivial solution  (𝑥, 𝑦, 𝑧) =

(±2024, ±765, ±6) when 𝐷 = 27 × 127. 
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(v) has common solution  (𝑥, 𝑦, 𝑧) = (±8, ±3,0)  and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±2024, ±765, ±3) when 𝐷 = 29 × 127. 

(vi) has only nontrivial solution  (𝑥, 𝑦, 𝑧) = (±2024, ±765, ±48)  when 𝐷 ≠ 2𝛼 × 127(𝛼 =
1,3,5,7,9). 

3.2 Proof of main theorem 

3.2.1 Primary analysis 

It is easily shown that (𝑥1, 𝑦1) = (2,1) is the minimal solution of the Pell equation 𝑥2 − 7𝑦2 = 1, 

therefor all integer solution of it will be 𝑥𝑛 + √7𝑦𝑛 = (8 + 3√7)𝑛, 𝑛 ∈ 𝑍. and the following recursive 

sequence will be established: 

𝑦𝑛+2 = 16𝑦𝑛+1 − 𝑦𝑛, 𝑦0 = 0, 𝑦1 = 3                                          (7) 

𝑥𝑛+2 = 16𝑥𝑛+1 − 𝑥𝑛, 𝑥0 = 1, 𝑥1 = 8                                           (8) 

Using modulo 2 on (7), we will get residue class sequence:0,1,0,1……, and 𝑦𝑛 ≡ 1(𝑚𝑜𝑑2) only 

when 𝑛 ≡ 1(𝑚𝑜𝑑2) ,  𝑦2𝑛 ≡ 1(𝑚𝑜𝑑2)  only when 𝑛 ≡ 0(𝑚𝑜𝑑2) . as a result  𝑦2𝑛 ≡ 0(𝑚𝑜𝑑2)  

and  𝑦2𝑛+1 ≡ 1(𝑚𝑜𝑑2). 

Using modulo 2 on (8), we will get residue class sequence:1,0,1,0……, and 𝑥𝑛 ≡ 0(𝑚𝑜𝑑2) only 

when 𝑛 ≡ 1(𝑚𝑜𝑑2) ,  𝑦2𝑛 ≡ 1(𝑚𝑜𝑑2)  only when 𝑛 ≡ 0(𝑚𝑜𝑑2) . as a result  𝑥2𝑛 ≡ 1(𝑚𝑜𝑑2)  

and  𝑥2𝑛+1 ≡ 0(𝑚𝑜𝑑2). 

Suppose (𝑥, 𝑦, 𝑧) = (𝑥𝑛+1, 𝑦𝑛+1, 𝑧), 𝑛 ∈ 𝑍 is the integer solution of (6), then 𝑦𝑛+1
2 − 9 = 𝑦𝑛+1

2 −
9(𝑥𝑛+1

2 − 7𝑦𝑛+1
2 ) = 64𝑦𝑛+1

2 − 9𝑥𝑛+1
2 = (8𝑦𝑛+1 + 3𝑥𝑛+1)(8𝑦𝑛+1 − 3𝑥𝑛+1) = 𝑦𝑛𝑦𝑛+2 , it is 

equivalent to: 

𝐷𝑧2 = 𝑦𝑛𝑦𝑛+2                                                            (9) 

Obviously 𝐷𝑍2 = 0 when 𝑛 = −2 or 𝑛 = 0, here we will get the common solution  (𝑥, 𝑦, 𝑧) =
(±8, ±3,0) on (6). 

Because 𝑦𝑛+2 ≡ 1(𝑚𝑜𝑑2), 𝑦𝑛 ≡ 𝑦𝑛+2  ≡ 1(𝑚𝑜𝑑2) when 𝑛 is an positive odd number. Therefor 

2(𝑦𝑛𝑦𝑛+2) = 0, and 2(𝐷) = 1, we will get  2(𝐷𝑍2) is an odd number, it is self-contradiction, this 

shows that 𝑛 is an nonnegative even number. Let 𝑛 = 2𝑚, 𝑚 ∈ 𝑍+, (9) is equivalent to: 

𝐷𝑧2 = 4𝑥𝑚𝑥𝑚+1𝑦𝑚𝑦𝑚+1                                                 (10) 

As a result the equation (10) will be:  

Case 1 𝑚 is an positive even number. 

Case 2 𝑚 is an positive odd number. 

3.2.2 Discussion on Case 1 

Let 𝑚 = 2𝑡𝑝(𝑡 ∈ 𝑍+, 𝑝 is an positive odd number), (10) is equivalent to: 

𝐷𝑧2 = 4𝑥2𝑡𝑝𝑥2𝑡𝑝+1𝑦2𝑡𝑝𝑦2𝑡𝑝+1                                                 (11) 

For 𝑦2𝑚 = 2𝑥𝑚𝑦𝑚, (10) is equivalent to: 

𝐷𝑧2 = 22+𝑡𝑥2𝑡𝑝+1𝑥2𝑡𝑝𝑥2𝑡−1𝑝 ⋯ 𝑥2𝑝𝑥𝑝𝑦2𝑡𝑝+1𝑦𝑝                                  (12) 

From (I) of Lemma 4, we can get 𝑔𝑐𝑑(𝑦2𝑡𝑝+1, 𝑦𝑝) = 𝑦1 = 3. From (II) of Lemma 4, we can get  

𝑔𝑐𝑑(𝑥2𝑡𝑝+1, 𝑥𝑝) = 𝑥1 = 8, so  (12) is equivalent to: 

𝐷𝑧2 = 28+𝑡 ∙ 32 ∙ 𝑥2𝑡𝑝𝑥2𝑡−1𝑝 ⋯ 𝑥2𝑝 ∙
𝑦

2𝑡𝑝+1

3
∙

𝑦𝑝

3
∙

𝑥𝑝

8
∙

𝑥
2𝑡𝑝+1

8
                        (13) 

For 𝑔𝑐𝑑(𝑦2𝑡𝑝+1, 𝑦𝑝) = 3 , we can get  (
𝑦

2𝑡𝑝+1

3
,

𝑦𝑝

3
) = 1 , for 𝑔𝑐𝑑(𝑥2𝑡𝑝+1, 𝑥𝑝) = 8 , we can get  

(
𝑥

2𝑡𝑝+1

8
,

𝑥𝑝

8
) = 1. From (II) of Lemma 4, we can get 𝑥2𝑡𝑝, 𝑥2𝑡−1𝑝, ⋯ , 𝑥2𝑝, ⋯ 𝑥𝑝 pairwise coprime. From 

(III) of Lemma 4, we can get 𝑥2𝑡𝑝+1, 𝑥2𝑡𝑝, 𝑥2𝑡−1𝑝, ⋯ , 𝑥2𝑝, ⋯ 𝑥𝑝 is coprime with 𝑦2𝑡𝑝+1 and 𝑦𝑝. So 
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𝑥
2𝑡𝑝+1

8
, 𝑥2𝑡𝑝, 𝑥2𝑡−1𝑝, ⋯ , 𝑥2𝑝,

𝑥𝑝

8
  is coprime with 

𝑦
2𝑡𝑝+1

3
  and  

𝑦𝑝

3
 . It means that 

𝑥2𝑡𝑝, 𝑥2𝑡−1𝑝, ⋯ , 𝑥2𝑝,
𝑦

2𝑡𝑝+1

3
,

𝑦𝑝

3
,

𝑥𝑝

8
,

𝑥
2𝑡𝑝+1

8
 pairwise coprime. 

Because 𝑥2𝑛 ≡ 1(𝑚𝑜𝑑2), 𝑦2𝑛+1 ≡ 1(𝑚𝑜𝑑2), we will get 𝑥2𝑡𝑝, 𝑥2𝑡−1𝑝, ⋯ , 𝑥2𝑝, 𝑦2𝑡𝑝+1, 𝑦𝑝 are odd 

numbers, so 
𝑦

2𝑡𝑝+1

3
,

𝑦𝑝

3
 are odd numbers. And Because 𝑥2𝑛+1 ≡ 8(𝑚𝑜𝑑16), we will get 

𝑥𝑝

8
,

𝑥
2𝑡𝑝+1

8
 are 

odd numbers. 2(𝐷) = 1 , so 2(2𝐷2)  is odd number, but 𝐷 (28+𝑡 ∙ 𝑥2𝑡𝑝 ∙ 𝑥2𝑡−1𝑝 ⋯ 𝑥2𝑝 ∙
𝑦

2𝑡𝑝+1

3
∙

𝑦𝑝

3
∙

𝑥𝑝

8
∙

𝑥
2𝑡𝑝+1

8
) = 8 + 𝑡, 𝑡 must be positive odd number. 

From (ii) of Lemma 5, we can get 
𝑥𝑝

8
  is square number only when 𝑝 = 1 or 𝑝 = −1. From (iii) 

of Lemma 5, we can get 
𝑦𝑝

3
 is square number only when 𝑝 = 1 or 𝑝 = 0. From Lemma 5, we can get 

𝑥
2𝑡𝑝+1

8
, 𝑥2𝑡𝑝, 𝑥2𝑡−1𝑝, ⋯ , 𝑥2𝑝, 𝑦2𝑡𝑝+1,

𝑦
2𝑡𝑝+1

3
   are non-square numbers for the arbitrary positive odd 

number 𝑝, therefor, 𝑥2𝑡𝑝, 𝑥2𝑡−1𝑝, ⋯ , 𝑥2𝑝, 𝑦2𝑡𝑝+1, 𝑦𝑝,
𝑥𝑝

8
,

𝑥
2𝑡𝑝+1

8
 are non-square numbers. 

When 𝑝 > 1 is an positive odd number, 𝑥2𝑡𝑝, 𝑥2𝑡−1𝑝, ⋯ , 𝑥2𝑝,
𝑦

2𝑡𝑝+1

3
,

𝑦𝑝

3
,

𝑥𝑝

8
,

𝑥
2𝑡𝑝+1

8
 are 𝑡 + 4 odd 

numbers which is not equal to 1, so they provide 𝑡 + 4 odd prime divisors at least for 𝐷. Further more, 

𝑡 is an positive odd number, 𝑡 + 4 ≥ 5, it means that the right half part of (13) provide 5 odd prime 

divisors at least for 𝐷, it is self-contradiction. 

When 𝑝 = 1, 𝑡 ≠ 1, 
𝑦𝑝

3
 and ,

𝑥𝑝

8
 are square numbers,  and 

𝑥𝑝

8
=

𝑥1

8
= 1,

𝑦𝑝

3
=

𝑦1

3
= 1, here (13) is 

equivalent to: 

𝐷𝑧2 = 28+𝑡 ∙ 32 ∙ 𝑥2𝑡𝑝𝑥2𝑡−1𝑝 ⋯ 𝑥2𝑝 ∙
𝑦

2𝑡𝑝+1

3
∙

𝑥
2𝑡𝑝+1

8
                        (14) 

At present, 𝑥2𝑡𝑝, 𝑥2𝑡−1𝑝, ⋯ , 𝑥2𝑝,
𝑦

2𝑡𝑝+1

3
,

𝑥
2𝑡𝑝+1

8
  provide 𝑡 + 2  odd prime divisors at least for 𝐷 . 

And 𝑡 ≠ 1 , 𝑡  is an positive odd number, so 𝑡 ≥ 3 , 𝑡 + 2 ≥ 5 . 𝑥2𝑡𝑝, 𝑥2𝑡−1𝑝, ⋯ , 𝑥2𝑝,
𝑦

2𝑡𝑝+1

3
,

𝑥
2𝑡𝑝+1

8
 

provide 5 odd prime divisors at least for 𝐷, it is self-contradiction. 

When 𝑝 = 1, 𝑡 = 1, (14) is is equivalent to: 

𝐷𝑧2 = 29 ∙ 32 ∙ 𝑥2 ∙
𝑦3

3
∙

𝑥3

8
= 29 × 32 × 5 × 11 × 17 × 23 × 127           (15) 

It shows that the right half part of (14) have 6 different odd prime, it is conflict with topic hypothesis, 

then (11) is might be wrong, (6) has no integer solution. 

3.2.3 Discussion on Case 2 

Let 𝑚 = 2𝑡𝑝 − 1(𝑡 ∈ 𝑍+, 𝑝 is an positive odd number), (10) is equivalent to: 

𝐷𝑧2 = 4𝑥2𝑡𝑝𝑥2𝑡𝑝−1𝑦2𝑡𝑝𝑦2𝑡𝑝−1                                                 (16) 

It could be proved by imitate 3.2.2 that (16) have nontrivial solution only when 𝑝 = 1, 𝑡 = 1, here 

(16) turns into 𝐷𝑧2 = 4𝑥2𝑥1𝑦2𝑦1 = 8𝑥1
2𝑥2𝑦1

2 = 29 × 32 × 127 , so 𝐷 = 2 × 127, 𝑧 = 48 , or 𝐷 =
23 × 127, 𝑧 = 24 , or 𝐷 = 25 × 127, 𝑧 = 12 , or 𝐷 = 27 × 127, 𝑧 = 6 , or 𝐷 = 29 × 127, 𝑧 = 3 , 

therefor equation (6) have nontrivial solution  (𝑥, 𝑦, 𝑧) = (±2024, ±765, ±48) when 𝐷 = 2 × 127 , 

(𝑥, 𝑦, 𝑧) = (±2024, ±765, ±24)  when 𝐷 = 23 × 127 , (𝑥, 𝑦, 𝑧) = (±2024, ±765, ±12)  when 

𝐷 = 25 × 127 , (𝑥, 𝑦, 𝑧) = (±2024, ±765, ±6)  when 𝐷 = 27 × 127 , (𝑥, 𝑦, 𝑧) =
(±2024, ±765, ±3) when 𝐷 = 29 × 127, 

In conclusion, the diophantine equations (6) has common solution  (𝑥, 𝑦, 𝑧) = (±8, ±3,0)  only 

when 𝐷 = 2𝛼 × 127(𝛼 = 1,3,5,7,9) , and nontrivial solution  (𝑥, 𝑦, 𝑧) =
(±2024, ±765, ±48). has when 𝐷 = 2 × 127.  (𝑥, 𝑦, 𝑧) = (±2024, ±765, ±24)  when 𝐷 = 23 ×
127 . (𝑥, 𝑦, 𝑧) = (±2024, ±765, ±12)  when 𝐷 = 25 × 127 . (𝑥, 𝑦, 𝑧) = (±2024, ±765, ±6)  when 

𝐷 = 27 × 127.(𝑥, 𝑦, 𝑧) = (±2024, ±765, ±3) when 𝐷 = 29 × 127.otherewise it has only nontrivial 

solution  (𝑥, 𝑦, 𝑧) = (±2024, ±765, ±48)when 𝐷 ≠ 2𝛼 × 127(𝛼 = 1,3,5,7,9). 
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