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Abstract. In order to more accurately characterize the virus infection in the host, a virus 

dynamics model with latency and virulence is established and analyzed in this paper. The 

positivity and boundedness of the solution are proved. After obtaining the basic reproduction 

number and the existence of infected equilibrium, the Lyapunov method and the LaSalle 

invariance principle are used to determine the stability of the uninfected equilibrium and 

infected equilibrium by constructing appropriate Lyapunov functions. We prove that, when the 

basic reproduction number does not exceed 1, the uninfected equilibrium is globally stable, the 

virus can be cleared eventually; when the basic reproduction number is more than 1, the 

infected equilibrium is globally stable, the virus will persist in the host at a certain level. The 

effect of virulence and latency on infection is also discussed. 

1. Introduction 

In the study of viral infection dynamics, most scholars think that the death of infected target cells is 

caused by the release of progeny virus. But the recent medical experiments find that, in the process of 

virus infection, in addition to the disruption death, the death of infected target cells also depends on the 

virulence of virus[1]. Based on the fact that the intensity of virulence depends on the size of viral load, 

Regoes adopts virulence function v [2]. Furthermore, the unified general function ( )g v  is used to 

describe the virulence[3], However, when analyzing the stability of  infected equilibrium, where the 

concentration of virus is *v , the author gives plenty of restrictions: 
* *

* * *

( ) ( ) ( )
1 1 0, 1 0

( ) ( ) ( )

v g v g v v g v

v g v g v v g v

     
          

      
 

The article does not give a reasonable biological interpretation of these conditions, which makes it 

difficult to meet in practical applications. 

On the basis of above studies, we adopt an unified virulence function ( )g v , only retaining 

condition (0) 0g   and ( ) 0g v  , which means that virulence effect disappears when there is no virus 

in the body; On the contrary, the higher the viral load is and the stronger the virulence is. Moreover, 

we also consider the influence of latency. A virus dynamics model is established: 
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 (1.1) 

where ( )x t , ( )z t , ( )y t and ( )v t  denote the concentration of uninfected target cells, latently infected 

target cells, actively infected target cells and free virus at time t , respectively.   is the recruitment 

rate of uninfected target cells. dx , dz  and v  are the death rate of uninfected target cells, latently 

infected target cells and actively infected target cells, respectively.   is the infection rate coefficient. 

The fractions (0 1)    and 1   are the probability that upon infection, an uninfected target cell 

becomes latent or active. Latently infected target cells are converted to actively infected target cells 

with rate z . Actively infected target cells, on the one hand, die directly at rate ( )g v y  due to virulence; 

on the other hand, disrupt at rate ay , at the same time generating progeny virus at rate ky . According 

to the biological background, all parameters are positive and a d . 

Figure 1 describes the virus infection mechanism of model (1.1): 



dx

vx ay ky

( )g v y

  uninfected

  target cell
x

actively infected

    target cells
y free virus v

latently infected

   target cells
z

z

dz v

(1 ) vx 

 

Figure 1: The virus infection diagram for model (1.1) 

2. Positivity and boundedness of the solution  

It is obvious that region  ( , , , ) : 0, 0, 0, 0x z y v x z y v       is a positively invariant for model 

(1.1). Summing up the first three equations in model (1.1), it follows that 

 ( ) ( ) ( )x z y dx dz g v a y d x z y             

then lim sup( )t x y z d    . where a d  and ( ) 0g v   are used. 

Since ( ) 0x t   and ( ) 0z t  , then lim sup ( )t y t d  . When t  is large enough, from the last 

equation of model (1.1),we obtain lim sup ( )t y t d  , then lim sup ( )t v t k d   . So the region 

 ( , , , ) :0 ,0x z y v x z y d v k d           is a positively invariant set of model (1.1). 

3. Basic reproduction number and the existence of equilibrium 

Model (1.1) always has an uninfected equilibrium 
0 ( ,0,0,0)E d . According to the method of next 

generation[4], the basic reproduction number of model (1.1) is: 

 
0

(1 )

( )

k d
R

ad d

  

 

 



 

Let the right-hand side of equalities in model (1.1) be 0. Then calculating the corresponding 

equation straightforwardly, we have following theorem: 
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Theorem 1. When 
0 1R  , model (1.1) has also a unique infected equilibrium * * * * *( , , , )E x z y v

besides 
0E , where 

*

*
*

*

*

* *,
)

,
( )(

v
x z y

d d vd k

v

v
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
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  
 

and *v  is the only positive root of the equation    ( ) ) ( )( ) (1g v a dd vd k         in 

the interval (0, )k d  . 

4. The global stability 

Theorem 2. When 
0 1R  , the uninfected equilibrium 

0 ( ,0,0,0)E d  is globally stable on  . 

Proof. Let 

1 0 0

0

ln
( )

x k k
L x x x z y v

x ad d ad d

   

   
     


 

Then the derivative of 
1L  along solution of model (1.1) is 

 
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Since 
0d x , then 
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where 0 0

0 0

1 1 2 0
x xx x

x x x x
 

    
         

    
. 

When 
0 1R  , it is obvious that 

1 0L   . We can derive that the maximum invariant set in 

 1( , , , ) : 0Lx z y v    is the singleton  0E . According to the LaSalle’s invariance principle[5], 

Theorem 2 holds. 

Theorem 3. When 
0 1R  , the infected equilibrium * * * * *( , , , )E x z y v  is globally stable in  . 

Proof. Define functions 

* * * * *

* * * *
*

2 ( ) ( )
x z y v v

x z y v v

x z y v
L d m d n d p d q g g v d

   
     

   

   
             

where 
* * *

* * ** * *
,

(1 )(1 )

z x v
m n

z x vz x v

 

     
 

    

 

and 
* * *

* * *
,

(1 )

x x v
p q

k z x v

 

   
 
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Then the derivatives of 
2L  along the solution of model (1.1) is 

* * * *
*

2 1 1 1 1 ( ) ( )
x z y v

L x m z n y p v q g v g v v
x z y v

       
                        
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It is easy to derive that 
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substituting equation (1.1) and (4.1) into 
2L  , then 
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substituting m , n , p  and q  into 
2l
 , we obtain 

* * * * * * *
* * *
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It is obvious that 
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substituting n  and q  into the two intermediate items of 
2L  , we have 
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where ( ) 0g v   is used. Then 
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Since 0n   and 0q  , then 
2 0L    is equivalent to *x x , *z z , *y y  and *v v . By the 

Lyapunov asymptotic stability theorem[6], Theorem 3 holds. 

5. The effect of virulence on the infection 



5

1234567890

ICEESE 2017 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 128 (2018) 012121  doi :10.1088/1755-1315/128/1/012121

In this section, we adopt a specific virulence function ( ) (1 ) ( 0, 0)g v bv mv b m     to analyze the 

effect of virulence in the process of infection. It is easy to derive that (0) 0g  , 2( ) (1 ) 0g v b mv     

and lim ( )t g v b m  , which is biologically meaningful. Based on the analysis of a HIV-1 model 

containing latency[7], we choose the following parameters: 4 1 110 ml d   , 1 100 dd  , 
8 12.4 10 mld    , 0.5  , 10.3d  , 1 1da  , 14000dk  , 123d  . We fix the initial 

concentration at 6(1.2 ,15,25 )10 ,100 . 

Firstly, we fix 1.2m   and choose three group numbers of b ; secondly, we fix 2b   and choose 

three group numbers of m . By numerical simulations, we obtain 
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Figure 2: The number of ( )x t  and ( )v t  when b  changes 
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Figure 3: The number of ( )x t  and ( )v t  when m  changes 

From Figure 2 and Figure 3, we can conclude that: the bigger the parameter b  is and the smaller 

the m  is, which represents the stronger the virulence is, then the higher the number of uninfected 

target cells and the lower the concentration of free virus are. This phenomenon is easy to understand: 

when the virulence becomes stronger, the infected target cells decreases, then free virus declines, thus 

the probability of uninfected target cells becoming infected is reduced, the number of uninfected target 

cells increases. Finnally, the degree of infection becomes lighter. 

6. Conclusion 

In this paper, we have considered a virus dynamics model with latency and virulence depending on the 

viral load. We adopt an unified general virulence function ( )g v . Based on the release of virus, we 

partition the infected cells into the latency and the activity. The basic reproduction number determines 

the dynamics behavior of this model. Finally, we discuss the effect of virulence on the infection: the 

stronger the virulence is, and the lighter the degree of infection is. 



6

1234567890

ICEESE 2017 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 128 (2018) 012121  doi :10.1088/1755-1315/128/1/012121

Furthermore, from the expression of 
0R  and *E , it is easy to find that parameters   and   can 

influence 
0R  and the position of *E , so we can also change the infection results by corresponding 

drug therapy. 
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