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Abstract. Traditional 𝐻∞  norm depicts peak system gain over infinite frequency range, but 

many applications like filter design, model order reduction and controller design etc. require 

computation of peak system gain over specific frequency interval rather than infinite range. In 

present work, new computationally efficient techniques for computation of 𝐻∞  norm over 

frequency limited interval are proposed. Proposed techniques link norm computation with 

maximum singular value of the system in limited frequency interval. Numerical examples are 

incorporated to validate the proposed concept.  

1. Introduction 

Consider a continuous linear time invariant dynamical system: 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 
𝑦 = 𝐶𝑥 + 𝐷𝑢                                                                   (1) 

 

where 𝐴 ∈  𝑅{𝑛× 𝑛}, 𝐵 ∈  𝑅{𝑛× 𝑚}, 𝐶 ∈  𝑅{𝑝× 𝑛}, 𝐷 ∈  𝑅{𝑝× 𝑛} with n= system order, m= number of 

inputs and p= number of outputs. The system (1) is called stable if all eigenvalues of A have negative 

real parts. The transfer matrix of (1) given as 𝐺(𝑗𝜔) = 𝐶(𝑗𝜔 𝐼 − 𝐴){−1}𝐵 + 𝐷 is of order 𝑝 ×  𝑚. For 

system (1), among many variants of norms, 𝐻∞ norm is the most popular and extensively used for 

system analysis and design applications like model order reduction, cost function minimization, filter 

and controller design. 

Definition 1: For stable system (1), the 𝐻∞ norm of the system over infinite frequency range is given 

by [1]: 

    ||𝐺(𝑗𝜔)||
{𝐻∞}

 =  𝑠𝑢𝑝{𝜔∈ 𝑅} 𝜎{𝑚𝑎𝑥}(𝐺(𝑗𝜔)) 

    ||𝐺(𝑗𝜔)||
{𝐻∞}

= 𝑠𝑢𝑝{𝜔=[−∞,+∞]}𝜎{𝑚𝑎𝑥}(𝐺(𝑗𝜔))                                   (2) 

where 𝜎{𝑚𝑎𝑥}(. ) is the largest singular value (SV) of the system over infinite frequency interval. 

 

Using Definition 1, infinity norm can be computed via largest SV of the system transfer matrix. Many 

techniques that link norm with SV computation have been developed such as SV computation for time 

delay system [2], Routh table [3], characterization of polynomial [4], state space formulation [5], 

bisection [1], [6] etc. In [1] and [6] imaginary eigenvalues of Hamiltonian matrix are computed and 

linked with largest SV the system. Also in [7] extremum SVs are computed for strong 𝐻{∞} norm 

computation. Similarly, largest SV can be computed using two sided Jacobi's method and Householder 

bidiagonalization method. Jacobi's method apply plane rotations to diagonalize transfer matrix [8]. 

Largest diagonal entry is the largest SV of the system. Although two sided Jacobi's method is 

computationally loaded, it is optimally accurate and guarantee stability even if transfer matrix 
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elements contain small relative errors [9]. Householder method (computationally less complex but less 

accurate as compared to Jacobi's technique) biadiagonalize transfer matrix by applying Householder 

transformation. Further it diagonalize system with orthogonal projections to yield largest SV [9]. 

Existing schemes [1]-[7] by definition, compute norm over infinite frequency range. However, many 

applications like frequency limited model reduction [10]-[13], filter design [14], signal reconstruction 

[15] etc. require analysis or design for the system in limited frequency interval. To the author's 

knowledge, no scheme to compute frequency limited 𝐻∞ norm appear in literature (although concept 

of frequency limited 𝐻{2} norm has been developed [16]). Therefore in present work, techniques to 

compute frequency limited infinity norm via largest SV (by introducing frequency limited versions of 

two sided Jacobi and Householder methods for system (1)) are proposed. 

2. Proposed techniques 

Definition 2: Given the stable system (1), frequency limited infinity norm is defined as: 

 

||𝐺(𝑗𝜔)||
{𝐻{∞},𝛿}

=  𝑠𝑢𝑝{𝜔∈𝛿} 𝜎{𝑚𝑎𝑥,𝛿}(𝐺(𝑗𝜔))                                         (3) 

 

where 𝛿 = [−𝜔𝑖, −𝜔{𝑖−1}]𝑈[𝜔{𝑖−1}, 𝜔𝑖], 𝜔{𝑖−1} is the lower frequency and 𝜔𝑖 is the higher frequency, 

𝑈 represents union and  i is the frequency interval index. 

Remark 1: When 𝛿 = [−∞ , +∞], 𝜎{𝑚𝑎𝑥,𝛿}(𝐺(𝑗𝜔)) = 𝜎{𝑚𝑎𝑥}(𝐺(𝑗𝜔)). 

Remark 2:  𝛿  may contain multiple frequency intervals as 

𝛿 =  [−𝜔{𝑖}, −𝜔{𝑖−1}]𝑈. . . 𝑈[−𝜔2, −𝜔1]𝑈[𝜔1, 𝜔2]. . . 𝑈[𝜔{𝑖−1}, 𝜔𝑖] = 𝛿1 𝑈. . . 𝑈𝛿{𝑖−1}.  Consequently, 

||𝐺(𝑗𝜔)||
{𝐻∞,𝛿}

= 𝑚𝑎𝑥 ( ||𝐺(𝑗𝜔)|{𝐻∞,𝛿1}, ||𝐺(𝑗𝜔)||
{𝐻∞,𝛿2 }

, . . . ||𝐺(𝑗𝜔)||
{𝐻∞,𝛿{𝑖−1}}

). 

2.1. Two Sided Jacobi's Technique for Frequency Limited H-Infinity Norm Computation: 

Definition 3: Jacobi's two sided transformation is defined as [17]: 

 

𝑍 = 𝐽𝑇𝐺(𝑗𝜔𝛿)𝐽                                                                       (4) 

 

where 𝐺(𝑗𝜔𝛿) = 𝐶(𝑗𝜔𝛿  𝐼 − 𝐴){−1}𝐵 + 𝐷,  𝜔𝛿 ∈ 𝛿, 𝐽 is the Jacobi rotation matrix given by: 

 

𝐽 = [
𝑐 𝑠

−𝑠 𝑐
]                                                                         (5) 

 

where 𝑐 = 𝑐𝑜𝑠(𝜃), 𝑠 = 𝑠𝑖𝑛(𝜃)  and 𝜃 is the rotation applied. On applying Jacobi rotation to (𝑝, 𝑞)  

block of 𝐺(𝑗𝜔𝛿), we obtain: 

 

 [
𝑍{𝑝𝑝}  𝑍{𝑝𝑞}

−𝑍{𝑞𝑝} 𝑍{𝑞𝑞}
] = [

𝑐 𝑠
−𝑠 𝑐

]
T

 [
G(jωδ){pp} G(jωδ){pq}

G(jωδ){qp} G(jωδ){qq}
] [

𝑐 𝑠
−𝑠 𝑐

]                            (6) 

 

To reduce to diagonal form, set 𝑍{𝑝𝑞} = 𝑍{𝑞𝑝} = 0. Manipulation and comparison yield: 

 

𝐺(𝑗𝜔𝛿){𝑝𝑞} (𝑐2 − 𝑠2 ) + (𝐺(𝑗𝜔𝛿){𝑝𝑝} − 𝐺(𝑗𝜔𝛿){𝑞𝑞})𝑐𝑠 = 0 

𝐺(𝑗𝜔𝛿){𝑞𝑞} − 𝐺(𝑗𝜔𝛿){𝑝𝑝}

𝐺(𝑗𝜔𝛿){𝑝𝑞}
=

(𝑐2 − 𝑠2)

2𝑐𝑠
= 𝑐𝑜𝑡(2𝜃) = 𝜁 

 

Let 𝑡 = 𝑡𝑎𝑛 (𝜃) satisfy 𝑡2 + 2𝜁 𝑡 − 1 = 0 whose solution give: 

 𝑡 =  −𝑠𝑖𝑔(𝜁)(|𝜁| + √({1 + 𝜁2 }) = 𝑠𝑖𝑔(𝜁)/(|𝜁| + √({1 + 𝜁2 }))  

𝑐 =  1/√({1 + 𝜁2 })𝑠 = 𝑐𝑡                                                        (7) 
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where 𝑠𝑖𝑔 is the signum function, 𝑐 and 𝑠 are invoked in (5) and (4) to obtain diagonal form and 

consequent largest SV. In following summary of method discussed above is presented. 

Algorithm 1: Frequency Limited 𝑯∞ Norm Computation using Jacobi's Technique 

Input: Given the system (1), frequency interval 𝛿 = [𝜔1, 𝜔2] and tolerance  ∈ : 

Output: Frequency limited 𝐻∞ Norm. 

for 𝛿 

 |𝐺(𝑗\𝑜𝑚𝑒𝑔𝑎_\𝑑𝑒𝑙𝑡𝑎)| = |𝐶(𝑗\𝑜𝑚𝑒𝑔𝑎_\𝑑𝑒𝑙𝑡𝑎 𝐼 − 𝐴)^{−1}𝐵 + 𝐷| 
  repeat 

  for all pairs 𝑝 <  𝑞 

  Compute   J  from  (7) and  (5) 

  Compute  Z  from  (4)  

  Update  |𝐺(𝑗𝜔𝛿)|  𝑏𝑦  𝑠𝑜𝑙𝑣𝑖𝑛𝑔 (6) 

Compute 𝜎{𝑚𝑎𝑥,𝛿}(𝐺(𝑗𝜔𝛿)) = 𝑚𝑎𝑥(𝐺(𝑗𝜔𝛿){𝑝𝑝}, 𝐺(𝑗𝜔𝛿){𝑞𝑞} 

  until(all    
|𝐺(𝑗𝜔𝛿){𝑝𝑞}|

(𝐺(𝑗𝜔𝛿){𝑝𝑝}𝐺(𝑗𝜔𝛿){𝑞𝑞})
{
1
2}

≤ ∈) 

end for 

2.2. Householder Transformation 

Definition 4: Householder transformation for bidiagonalization is defined as [18]: 

 

     𝐵(𝑗𝜔𝛿) = 𝐻𝑘𝐺(𝑗𝜔𝛿)𝑂𝑘     (8) 

 

where 𝐺(𝑗𝜔𝛿) = 𝐶(𝑗𝜔𝛿  𝐼 − 𝐴){−1}𝐵 +D  is of order   𝑝 ×  𝑚, 𝜔𝛿 ∈ 𝛿, 𝑘  is the column or row of  

𝐺(𝑗𝜔𝛿)   whose selected elements are to be zeroed out,  𝐻𝑘   is premultiplier Householder that 

successively zero out elements below  (𝑘, 𝑘)  entries of  𝐺(𝑗𝜔𝛿)  computed by: 

 

      𝐻𝑘  =  𝐼 − 2𝑤{𝐻𝑘}𝑤{𝐻𝑘}
𝑇     (9) 

 

where 

    𝑤{𝐻𝑘}  = 𝑣{𝐻𝑘}/ ||𝑣{𝐻𝑘}||
2

 

    𝑣{𝐻𝑘}  =  (0, . . . ,0, 𝑎{𝑘𝑘}
𝑘  − 𝛼{𝐻𝑘}, 𝑎{𝑘+1,𝑘}

𝑘  , . . . , 𝑎{𝑝𝑘}
𝑘  ) 

    𝛼{𝐻𝑘}  =  −𝑠𝑖𝑔(𝑎{𝑘𝑘}
𝑘 )||(0, . . . ,0, 𝑎{𝑘𝑘}

𝑘  , 𝑎{𝑘+1,𝑘}
𝑘  , . . . , 𝑎{𝑝𝑘}

𝑘 )|| 

 

 𝑎{𝑘𝑘}  is the (𝑘, 𝑘) element of 𝐺(𝑗𝜔𝛿) and 𝑂𝑘  is post multiplier that successively zero out transfer 

matrix elements past  (𝑘, 𝑘 + 1)  entries to yield bidiagonal form of system matrix. 

 

     𝑂_𝑘 =  𝐼 − 2𝑤_{𝑂_𝑘}^𝑇𝑤_{𝑂_𝑘}   (10) 

 

where 

𝑤{𝑂𝑘}  =  𝑣{𝑂𝑘}/ ||𝑣{𝑂𝑘}||
2

 

  𝑣{𝑂𝑘}  =  (0, . . . ,0, 𝑎{𝑘𝑘+1}
𝑘  − 𝛼{𝑂𝑘}, 𝑎{𝑘,𝑘+2}

𝑘  , . . . , 𝑎{𝑘𝑚}
𝑘  )  

  𝛼{𝑂𝑘}  = −𝑠𝑖𝑔(𝑎{𝑘𝑘+1}
𝑘  )||(0, . . . ,0, 𝑎{𝑘𝑘+1}

𝑘  , 𝑎{𝑘,𝑘+2}
𝑘  , . . . , 𝑎{𝑘𝑚}

𝑘  )|| 

 

Remark 3: Householder transformation maps one vector subspace into another by preserving the 

norms of initial and resulting vectors. Moreover 𝐻𝑘 = 𝐻𝑘
𝑇 , 𝐻𝑘

{−1}
= 𝐻𝑘

𝑇 , 𝐻𝑘
2  = 𝐼. 

Remark 4: Householder bidiagonalization is a successive process i.e. 𝐻1 𝐺(𝑗𝜔𝛿) = 𝑆1, 𝑆1𝑂1 =
𝑆2, 𝐻2𝑆2 = 𝑆3, . . . , 𝑆𝑚𝑂𝑚 = 𝐵(𝑗𝜔𝛿) and  
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𝐺(𝑗𝜔_𝛿) = (𝐻1. . . 𝐻𝑝)𝐵(𝑗𝜔𝛿)(𝑂𝑚. . . 𝑂1). 

 

After bidiagonal form 𝐵(𝑗𝜔𝛿) is obtained, it's orthogonal matrices P and Q are computed such that 

Σ = 𝑃𝑇𝐵(𝑗𝜔𝛿)𝑄 is diagonal and nonnegative. Largest diagonal entry qualify as infinity norm in given 

frequency interval. The columns of P and Q are right and left singular vectors respectively. 

Algorithm 2: Frequency Limited 𝑯_∞ Norm Computation using Householder Technique 

Input: Given the system (1), frequency interval  𝛿 = [𝜔1 , 𝜔2 ] ∶ 
Output: Frequency limited 𝐻∞ Norm. 

for 𝛿  

𝐺(𝑗𝜔𝛿) = 𝐶(𝑗𝜔𝛿 𝐼 − 𝐴){−1}𝐵 + 𝐷  
Set 𝑆{𝑘−1} = 𝑆0 = 𝐺(𝑗𝜔𝛿) 

for 𝑘 = 1: 𝑚 

Compute 𝐻𝑘 from (9)  

Compute 𝑆{𝑘𝐻} = 𝐻𝑘𝑆{𝑘−1} 

Compute 𝑂𝑘 from (10)  

Apply post multiplier  𝑆𝑘 = 𝑆{𝑘𝐻}𝑂𝑘 

end for 

Set 𝐵(𝑗𝜔𝛿) = 𝑆𝑘   

Diagonalize to obtain  Σ = 𝑃𝑇𝐵(𝑗𝜔𝛿)𝑄  

Compute norm by 𝜎{𝑚𝑎𝑥,𝛿} = 𝑚𝑎𝑥(Σ) 

end for 

Remark 5: Techniques A and B can be used for computation of 𝐻∞ norm for discrete time systems as 

well. 

Remark 6: The proposed techniques A and B are applicable to arbitrarily constructed matrices. 

However as most applications of frequency limited  𝐻∞ norm are related to systems having certain 

physical interpretation, therefore posteriori constructed system matrices are considered in present work.  

3. Illustrative examples 

Proposed techniques are applied to many continuous and discrete time systems out of which results for 

few examples are presented. 

3.1. Continuous Time Systems 

Example 1: Consider following 6{𝑡ℎ} order SISO system [19]: 

 

 
 

Example 2: Consider another 6{𝑡ℎ} order MIMO system [20]: 
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3.2. Discrete Time Systems 

Example 3: Consider following 4{𝑡ℎ} order discrete time SISO system [21]: 

 

 
 

Example 4: Consider following discrete time 6{𝑡ℎ} order system [21]: 

 

 
 

SV plot for systems are shown in Fig. 1, Fig. 2, Fig. 3 and Fig. 2 respectively and computed infinity 

norms are given in Table 1 and Table 2 respectively, for various frequency intervals. The computed 
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norms match with the maximum SV in given frequency interval that certify the correct development of 

the proposed techniques. 

 

Figure 1. SV plot for example 1. 

 

Figure 2. SV plot for example 2. 
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Figure 3. SV plot for example 3. 

 

Figure 4. SV plot for example 4. 
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Table 1. Frequency limited infinity norms for continuous time systems. 

 
 

Table 2. Frequency limited infinity norms for discrete time systems. 

 

4. Concluding remarks 

In order to emphasize system analysis, design and optimization in limited frequency interval, two 

techniques to compute frequency limited infinity norm are proposed. In both techniques namely 

Jacobi's and Householder, largest SV of the system is computed at each frequency point and maximum 

of these values is taken over limited interval. The computed values match with maximum SV in 

limited frequency interval that certify the successful development of the proposed schemes. 
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