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Abstract. Lack of charging stations has been a main obstacle to the promotion of electric 
vehicles. This paper studies deploying charging stations in traffic networks considering grid 
constraints to balance the charging demand and grid stability. First, we propose a statistical 
model for charging demand. Then we combine the charging demand model with power grid 
constraints and give the formulation of the charging station deployment problem. Finally, we 
propose a theoretical solution for the problem by transforming it to a Markov Decision Process. 

1.  Introduction 
One critical issue holding back the widespread of electric vehicles (EVs) is the scarcity of charging 
facilities. For example, EVs in ShenZhen had increased by 6958 during 2009-2014, but only 3091 new 
chargers were constructed during this period. Even so, the utilization of chargers is less than 33%. On 
the other hand, numerous EVs charging synchronously will shake the power networks seriously. K. 
Clement-Nyns [1] shows that, when the EV penetration reaches 30%, the uncoordinated EV charging 
will cause 5% total power loss and 10% voltage deviation. Thus, when deploying charging stations, 
both the charging demand in traffic networks and the stability in power grid  should be considered. 

There are some papers focusing on the charging station deployment. L. Feng [2] models the 
charging demand by a weighted voronoi diagram to minimize the detours But it only considers the size 
and location in traffic networks. C. Upchurch [3] and M. Kuby [4] model the charging demand as a 
flow refueling location model to maximize the captured flows. A. Lam [5] provides a structure for 
charging station placement including the formulation, complexity and solutions. In spite of the various 
models and solutions proposed, the impacts on power grid are untouched. 

There are also some papers focusing on deploying charging stations in power networks. M. 
Aghaebrahimi [6], P. Sadeghi-Barzani [7], Z. Liu [8] locate charging stations in distribution systems to 
minimize costs. But mapping the power network constraints to costs is not proper, because violating 
the constraints may cause disasters. N. Ariyapim [9] proposes an ant colony optimization method to 
optimize the charging station locations to minimize the feeder loss in distribution systems. Although 
these papers study the deployment of charging stations in power networks, none of them consider the 
spatio-temporal features of charging demand. 

2.  The system model 
The charging demand of EVs has remarkable spatio-temporal characteristics and varies randomly over 
time. Thus, a statistical model for charging demand is proposed in this section. 
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Figure 1. A illustration of graph and the conversion of hybrid node 

2.1.  The statistic model for charging demand 
Let a directed graph ,      denote the traffic network, where 1 2{ , ,..., }Nn n n is the set of nodes 

including the endpoints and crossing points of all roads.   is the set of road segments connecting two 
nodes in . Typically, a node can play three roles, i.e. source node, transit node and destination node. 
A source node is the one where EVs will enter the map. A destination node is the one where EVs will 
stop the trips. A transit node is the one where EVs will certainly visit another node without stopping. 
A hybrid node is the one that plays more than one role. 

For a road segment ( , )i jn n  , let ijt  denote the probability that EVs left in  will visit jn , here 

0ijt   if ( , )i jn n  . Then, for any in , we have 1 1N
ijj t  . Let ia  denote the amount of EVs enter the 

map at in . In practice, we can get the knowledge about ijt , ia  with historical traffic statistics. As 
shown in Fig.1 (a), the weight of an arc denotes the transition probability ijt , node 1 is a transit node, 
node 2 is a hybrid node and node 3 is a destination node. 

This paper aims to find a charging station deployment scheme to maximize the trips captured. An 
trip is captured iff it passes one or more charging stations. This objective elicits two issues: (1) how to 
count the trips captured at a hybrid node; (2) how to avoid repeat count, i.e. a  trip passes multiple 
charging stations should be counted as captured only once. 

For the first issue, we adopt the following transformation to eliminate the hybrid nodes. For any 
hybrid node in  , by adding a redundant node in   ( in   ), and let ii iit t  , 1i it     and 0iit  , we 
can eliminate a hybrid node from the map. With this step, in  becomes a transit node and the new  in   is 
a destination node. By this transformation, we can obtain a pure map without hybrid node. Fig.1 (b) is 
the pure version of Fig.1 (a). The remaining parts of this paper will base on such a pure map. We use 

p  to denote the set of nodes of the pure map. 
For the second issue, we  adopt the following approach to avoid repeat count. If a node in  is 

selected to deploy a charging station, then we set  in  as a“new”destination node by assigning 1iit   
and 0,ijt j i   . It is obvious that, by doing so, any  trip that passe in will not be captured by other 
node. Finally, the summation of the  trips that ending at all charging stations nodes is the trips be 
captured by a deployment scheme. Basing on the above transformations, the quantized benefit of a 
charging station deployment scheme is modeled by  using the standard Markov chain methodology [10] 
as follows. 

A charging station deployment scheme is defined as a column vector 1 2( , ,..., )TNx x xX , where 

1ix   if a charging station is located at in , otherwise 0ix  . Let   denote the set of destination nodes 
on the pure map and X  denote the set of charging station nodes of X . For a given deployment 
scheme X , let ( )ijf X  denotes the probability that EVs entering the map at in , will leave the map at 

jn . Note that an EV can only leave the map at a charging station node or a destination node. If an  EV 
left the map at a destination node, the corresponding trip is not captured. If an  EV left the map at a 
station node, the corresponding trip is captured. Then, for any j Xn     and any in   and i j , 
we have 



3

1234567890

ICAESEE 2017 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 113 (2018) 012117  doi :10.1088/1755-1315/113/1/012117

 
 
 
 
 
 

 ( ) ( ),
p

ij ik kj

k

f t f



 


X X   (1) 

where ikt   is defined as 

 
1, , 1
0, , 1

, 0

i

ik i

ik i

i k x
t i k x

t x


   


  (2) 

Note that, in function (1), ( ) 1ijf X  if i j . Enumerating all the possible i and j, function (1) can 

compose a | |XN     linear equations. We can get the value of each ( )ijf X  easily by solving these 
equations. Then the amount of trips that is captured by X  is 
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2.2.  The model of the power grid 
For the charging station deployment problem, we should not only consider the locations on the map to 
meet the charging demand, but also consider their locations on the grid to meet the constraints of 
power grid. Thus, we give the model of power grid in this subsection. 
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Figure 2. The model of a branch that connects the buses m and n [11]. 

A power network contains a set   of nodes and a set   of lines connecting these nodes. A node, 
also referred to as a bus in the power engineering nomenclature, can represent a generator or a load 
substation. A line, also known as a branch, can stand for a transmission or a transformer. 

Consider first a power system module of two nodes, m and n, connected through a line. Two-node 
connections can be represented by the equivalent   model, with the line series impedance 1mn mnz y  
and total charging susceptance ,c mnb , in series with an ideal phase shifting transformer whose tap ratio 
has magnitude   and phase shift angle  . The   model is shown in Fig. 2. 

Denote  the complex voltage at m by mv  and the complex current flowing from m to n by mni . 
Invoking Ohm's and Kirchoff's laws on the circuit of Fig. 2 yields 
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A small shunt susceptance ,s mmb  is typically assumed between the node and the ground, yielding the 

current ,mm s mm mi jb v . In this paper, we denote the complex current at m by mi . Then according to 
KCL,  we have 
 ,

m
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where m  is the set of buses directly connected to m; , ,( 2)
m m

mm s mm c mn mn

n n

Y j b b y
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if mn , and zero otherwise. 
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If a transformer of property | | mnjmn mn e    exists from  m to n, where | |mn  is the tap ratio and 

mn  is the phase shift, then the mmY , mnY  and nmY  in (5) should be replaced by mmY  , mnY   and nmY   

respectively, where 2, ,2 2 | |mm mm mn c mn mn c mn mnY Y Y y Y y      （ ） , *mn mn mnY Y   , nm nm mnY Y   . 

Denote the complex power injected at m by m m ms p jq   and the conjugation by *, it holds that 
*m m ms v i . By writing the complex bus admittance  as mn mn mnY G jB   and  the complex bus voltage 

as | | mjm mv v e  , then for any m , we have 

 | || | ( cos sin ),
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where mn m n    . The 2 | |  equations in (6) and (7) involve 4 | |  variables { , ,| |, }m m m m mp q v   . 

Among the variables, 1) the reference bus has fixed (| |, )v  ; 2) ( ,| |)p v  are controlled at generator 

buses; 3) ( , )p q  are predicted at load buses. Fixing the 2 | |  variables, the remaining ones can be 
obtained by solving  (6) and (7). 

The charging power of EVs mainly comes from power networks. Thus we must make sure that the 
power network constraints are not violated when deploying charging stations. The main impacts on 
power networks are the voltage deviation and power limitation. Given a deployment scheme X, the 
charging power needed at each candidate location is cs X  where cs  is the charging power of a charging 
station. It's reasonable to assume that a charging station will draw power from its local bus. So, we use 
a | | | |   matrix W to denote the connections between  candidate locations and buses, with 1ijw   if 

jn  draws power from the bus i, otherwise zero. Denote the charging power by a | | 1  vector s , then  
we have 
 .css WX   (8) 

Connecting the charging power to the buses should not exceed the power capacity, i.e. 

 , s s s   (9) 

where s  is the maximum power capacity, s is the base load. 
Gather the charging powers and based loads, the new bus voltages can be obtained by solving 

(6) and (7). The new bus voltages should meet the voltage constraint: 
 | | ,v v   (10) 

where v  is a | | 1  vector that denotes the lower bound of bus voltages. 

2.3.  The problem formulation 
  
 max ( )F X  (11) 

 
1

.  .  
N

i
i

s t x budget


   (12)  

 | | ,v v    (13) 

         ,s + s s    (14) 

                       {0,1},1ix i N      (15) 

                                      {0,1}, , .ij iw n j         (16) 

      The objective function (11) aims to find the optimal charging station deployment scheme X to 
maximize the trips captured. The constraints (12) indicates the upper bound of budget . The constraints 
(13), (14) are grid constraints. 
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3.  Solution 
Since the computation of F(X) involves matrix inversion, the problem formulated in section 2.3 is not 
easily amenable to the standard integer programming techniques. Thus, we transform the problem to a 
constrained average-reward Markov Decision Process (MDP). 

3.1.  Introduction of Markov Decision Process 
A Markov process is observed at discrete time points 1 2 3, , ,t t t    . At any time, the process is 

corresponded to a state. The state-space can be denoted by a finite set 1 2{ , , , }Ee e e   . At any time, 

an action should be chosen to switch to the next time and  state. Let ( )iA e  denote the finite set of all 

possible actions in state ie . If the system is in state ie  and action ( )ia A e  is chosen, then a reward 

iar  is earned immediately. Let  iajp  denote the probability the system will switch to je  next. Assume 

that { 1, 2,...}te t ∣  and { 1,2...}ta t ∣  are the sequences of observed states and corresponding actions 

of a process. 
A decision rule t   is a function which assigns a probability to the event that action a is taken at 

time t. For a Markov policy 1 2( , ,...)R   . For any policy R and initial state ie , we denote the average 

expected reward by ( )i R  , i.e. 

 1
1 1 ( )

1
( ) ili f ( )m n , ,

T E

i R t j t i ja
T

t j a A j

R P e e a a e e r
T

   


  

     ∣   (17) 

where 1( , )R t j t iP e e a a e e    ∣  is the induced conditional probability, under policy R, that at time t 

the system is in state je  and action a is taken, given that the system is in state ie  at the time 1t . The 

policy *R  is said to be average optimal iff *( ) sup ( )i i i
R

R R e  ，  . 

3.2.  The problem reformulation 
Given a location problem with the node set   and the initial customer distribution b , we define the 
following MDP: the state space is set to   ; the action is set to ( ) {0,1}iA e   for any ie  ; the 

transition probability iajp  is set to iaj ijp t , where ijt   is defined in function (2); the reward iar  is set to 

iar a  . Specifically, taking action 1 at in  means treating this node as a charging station node, and 

vice versa. Then we have the following result: 
Theorem 1 Let vector u be a deployment policy.  Define a function  uh  by ( )u ih i u  . Then, 

according to function (3), we have 
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Furthermore, according to function (17), we have 
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  (19) 

The definitions of iajp , iar , and uh  imply that the Markov chain induced by policy uh  has a 

transition matrix  whose elements are defined by equation (2). Thus, 
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According to the above theoretical derivation, we can get the following theorem 2, which is 
an immediate consequence of BERMAN [12]. 

Theorem 2 Given the following mixed integer program (MIP), 
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We have the following results: (1) the MIP is  solvable if and only if MDP is  solvable; (2) The 
optimal value of MIP is equal to the optimal value of MDP; (3) if * * *( , , )x y u   is the optimal solution 

of MIP, then *u  is the optimal station deployment scheme. 
The problem described in theorem 2 is a mixed integer program, which can be solved by existing 

solvers such as CVX, CPLEX etc. So, due to page limit, we do not show the detailed computing and 
evaluation in this paper. 

4.  Conclusion 
This paper studies the deployment of charging stations in traffic networks considering grid constraints 
to balance the charging demand and grid stability. The main contribution of this paper include two-
folds: (1) we propose a statistical model for charging demand, (2) we combine the charging demand 
model with power grid constraints and give the formulation of the charging station deployment 
problem, (3) we propose a theoretical solution for the problem by transforming it to a  Markov 
Decision Process. 
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