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Abstract. To take advantage of the energy storage system (ESS) sufficiently, the factors 
that the service life of the distributed energy storage system (DESS) and the load should 
be considered when establishing optimization model. To reduce the complexity of the 
load shifting of DESS in the solution procedure, the loss coefficient and the equal 
capacity ratio distribution principle were adopted in this paper. Firstly, the model was 
established considering the constraint conditions of the cycles, depth, power of the 
charge-discharge of the ESS, the typical daily load curves, as well. Then, dynamic 
programming method was used to real-time solve the model in which the difference of 
power ∆s, the real-time revised energy storage capacity Sk and the permission error of 
depth of charge-discharge were introduced to optimize the solution process. The 
simulation results show that the optimized results was achieved when the load shifting 
in the load variance was not considered which means the charge-discharge of the energy 
storage system was not executed. In the meantime, the service life of the ESS would 
increase. 

Keywords. Distributed energy storage; Peak load shifting; Real-time optimization; 
Dynamic programming. 

1.  Introduction 
With the economic development of the increase in demand for electricity, distribution peak pressure 
increase. The traditional expansion and expansion program has caused the equipment utilization rate to 
be low and the investment risk is large. The use of the battery energy storage system (BESS) peak load 
shifting is an effective solution. The centralized energy storage system installed on the low side of the 
transformer cannot effectively alleviate the phenomenon that the line is overloaded and the terminal 
voltage of the distribution network is low, therefore, the distributed energy storage system installed on 
the load side can effectively relieve the peak regulation of the distribution network, and alleviate the 
phenomenon that the voltage of the distribution line is overloaded and the terminal voltage of the 
distribution network is low. There are many researches on the operation strategy of distributed and large-
scale energy storage in power grid peak load shifting and micro-grid distributed power supply at home 
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and abroad, and the literature on distributed energy storage in mitigating pressure of distribution network 
is relatively few [ 1-5]. 

Based on the theory of centralized, large-scale energy storage and micro-network distributed power 
supply, this paper studies the operation strategy of distributed energy storage system based on 
distribution peak load shifting. In the literature [6-7], by analyzing the predicted load, the problem of 
tracking load is high and the load is peaked from the highest to the low, and the problem of the load 
peak weakening is not obvious. In the literature [8], considering the battery energy storage life constraint 
and the power fluctuation constraint of the wind storage system, three kinds of operation modes of the 
energy storage system, namely, the peak load filling mode, the power smoothing mode and the power 
tracking mode are proposed, which reduces the dependence on the predicted load; In the literature [9], 
a real-time optimization model based on dynamic programming is proposed. By short-term load 
forecasting, the impact of short-term load forecasting accuracy is reduced. The algorithm for solving the 
optimization strategy is divided into two categories, namely, intelligent algorithm and classical 
algorithm. In the literature [10-13], intelligent algorithm is adopted, including genetic algorithm, particle 
swarm optimization and simulated annealing algorithm. The advantage of this is that it can deal with 
nonlinear problems well, but the disadvantage is that there are more local optimal solutions , It is difficult 
to guarantee convergence for the global optimal solution; In the literature [14-15], the classical 
optimization algorithm is adopted, including the gradient algorithm, the dynamic programming 
algorithm, the gradient algorithm is very dependent on the initial value, and cannot deal with the 
intermittent problem, while the dynamic programming algorithm is in the global optimal solution and 
processing intermittent, non-linear problems can achieve very good results, and easy to computer 
programming. 

Based on the above theory, this paper presents a real-time optimization strategy of distributed energy 
storage system based on peak load shifting. The optimization model of the charge and discharge strategy 
is established by taking into account the network conversion coefficient and the energy storage life. The 
influence of the dynamic life of the battery is analyzed by using the dynamic algorithm and the actual 
load and the forecast load. The state variables improve the accuracy of the optimization results. 

2.  Real - time optimization modeling of peak load shifting 
Energy storage system on the power system peak load shifting, according to the owner of the different, 
mainly divided into two ways to achieve. Energy storage system for the user, focusing on the energy 
efficiency of energy storage system, usually consider the market price difference, the biggest economic 
interests for the purpose of modeling; energy storage system for the power grid side of the general to 
delay the expansion of the grid for the purpose of smoothing the load Curve for the goal of establishing 
an optimization model. In this study, the mathematical variance is introduced from the grid side, and the 
optimization model is established. 

2.1.  Conversion of distributed energy storage system 
In order to avoid the introduction of complex power flow calculation time and optimization time, reduce 
the optimization accuracy of the case, the introduction of network loss conversion coefficient, there are 
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Where: BESSP  is the total charge-discharge active power converted to the transformer side of the 

distributed energy storage system; ia  is the loss factor of the i-th distributed energy storage to the 

transformer side energy storage; ,BESS i jP  is j moment, the discharge power of the i-th energy storage unit; 

N is the number of load data points in a day divided into N times; m is the number of distributed energy 
storage units. 
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Fig. 1 Schematic diagram of charging and discharging in distributed energy storage system 

 
As shown in Figure 1, for the distributed energy storage system charge and discharge diagram. 
(1) i time storage system charge, U0 for the rated voltage, there are: 
 

0 _ 0 _= +i c BESS i ic 0P P P                                                                  (2) 

 
Where, 0iP  is the active loss of the branch from node 0 to node i when the battery is charged. 
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Take the form (3) into (2) 
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(2) i time storage system discharge, Ui for the rated voltage, there are: 
 

00 _ 0 _+ =i d BESS i diPP P                                                          (7) 

 
Similarly, available 
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The rated voltage of the system is UN, and the energy storage system BESSiP  is defined as negative 

when charging, and the discharge is positive 
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2.2.  Real-time optimization modelling of peak load filling 
(1) Objective function 
The variance indicates that the random variable deviates from the mean, so the load variance is 

generally able to reflect the smoothness of the load curve. In the study, the load curve is also smoother. 
Therefore, based on the peak load shifting of the distributed energy storage system operation strategy 
optimization model, this paper establishes the following objective function. 

 
2

, ,
1 1

1 1
min ( ) ( ( ))

N N

load t BESS t load t BESS t
t t

f X P P P P
N N 

 

    ， ，                                    (10) 

 

Where, ,load tP is the active load of the system at time t; BESS tP ， is the time t, the distributed energy 
storage system is converted to the transformer side, the total charge and discharge active power. 
Real-time optimization method is mainly through the call of different data to achieve, in a certain time state 
optimization, the state before the data call real-time load data, after the data call forecast load data. 

(2) Constraints 
To ensure the life of the energy storage system, optimize the model to establish the following 

constraints. 
Battery charge and discharge number of constraints. After the battery is connected to the power 

system, it is divided into three kinds of operating states, namely, charging, discharging and floating state. 
When the battery charge and discharge loss is not taken into account, the system can be regarded as zero 
power charging or discharging The Therefore, only the intermittent charge or discharge, that the battery 
only a charge or discharge. Based on this, the model establishes the i-energy storage system charge and 
discharge times the constraint is ki times. 
Battery charge and discharge depth constraints. 
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Where, miniSOC  and maxiSOC  are the minimum and maximum values of the battery charge state of 

the i-node, ,i tDOD  is the battery charge and discharge depth of the i-node, and 0iC  is the rated capacity 
of the i-th energy storage system. 
Battery charge and discharge power constraints. 
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Where BESSi tP ，  is the charge / discharge power at time t of the i-th node, ,maxicP   is the maximum 

charging power of the i-th node energy storage system, and d,maxiP  is the maximum discharge power of 
the i-th node energy storage system. 

By analyzing the optimization model, it can be seen that the objective function is a nonlinear model, 
and after the charge and discharge depth constraint is introduced, the model is no longer continuous and 
can not be solved by the continuous model optimization algorithm. This paper proposes a dynamic 
programming method to solve this model. 
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3.  Optimization of Optimization Model Based on Dynamic Programming 

3.1.  Classic dynamic planning 
The basis of the dynamic programming algorithm is the optimal theory: the optimal strategy contains 
the sub-strategy must be the optimal sub-strategy. And with no effect, that is, the stages in a certain order 
after a good, for a given stage of the state, its previous stages of the state can not directly affect its future 
decision-making, but only through the current state. The above is the theoretical basis for solving the 
optimization model in real time. 

Dynamic programming method is divided into reverse order solution and sequential solution, the key 
is to correctly write the dynamic programming of the recursive relationship. In general, when the initial 
state given, with the inverse method is more convenient, when the termination of the state given, with 
the push method is more convenient. But also according to the actual situation of the problem, select the 
appropriate recursive method. As shown in Figure 2, for the stage of the decision process, for the 
dynamic planning of the basic process.. 
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1 2 k n
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v1(s1,x1)

s2 s3 sk Sk+1 Sn

xn
Sn+1

v2(s2,x2) vk(sk,xk)
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Fig. 2 Basic flow of dynamic programming 

 
Where the state variable is s1, s2···sn+1, the decision variable is x1, x2···xn+1. In the k-th stage, the 

decision xk causes the state sk to be shifted to sk+1, and the state transition function is 
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The process indicator function is related to the function of each stage 
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Analysis available, classical dynamic programming also has the following advantages: for more 

complex models of constraints, dynamic programming can turn complex problems into a series of simple 
subproblems, making it easier to obtain global optimal solutions; for some difficult to express the 
nonlinear problem, discrete problem, dynamic programming method can be easily processed; dynamic 
programming to solve the characteristics of the process, so that it can get a set of solutions, is conducive 
to the analysis of the problem. 

3.2.  Solving the optimization model based on dynamic programming 
The upper layer control module of the distributed energy storage system can calculate the output of the 
PCS according to the principle of distributed energy storage capacity ratio distribution to the energy 
storage nodes by dynamic programming algorithm. As a result of the principle of distribution by capacity 
ratio, so the energy storage and discharge depth of each node is synchronized, the overall charge and 
discharge depth can be expressed with a node energy storage. Charge and discharge power constraints 
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Where, ,maxiceP  is the rated power of the i-node energy storage system at charge time, and ,maxideP  is 
the rated power of the i-node energy storage system during discharge. 

To simplify the computational complexity, the model is solved by dynamic programming as follows: 
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Fig. 3 the basic flow of optimization strategy based on dynamic programming 
 

(1) 1 day to t  interval is divided into N stages, corresponding to the N states of the dynamic 

programming. The total capacity of the energy storage system is divided into K states 
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Where, T is the time of 1 day; eBESSP   is the total rated power of the total installed power of the 

distributed energy storage system to the total rated power of the low side of the transformer; s  is the 
power difference in the adjacent state. When the s  value is small, the optimization path is relatively 
large and is suitable for accurate calculation. When there is a time requirement, s  is appropriate to 
take a larger value to shorten the optimization time. 

(2) The actual total capacity at time k is Sk, the charge and discharge depth at this time is 
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Due to the existence of s , the model is discrete, in order to ensure that the optimization process 

can be a good termination, allowing DOD ± 1% error. 1% of the value of energy storage system, 
including charge and discharge efficiency factors, as well as the loss factor of the network loss factor. 

(3) The k-th state to the k + 1 stage decision indicators 
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Where, xk is the decision variable for the state sk to sk+1, as shown in Figure 3, and each arrow 

represents the decision from the previous state to the next. Smax and Smin correspond to arrows for 
decision making boundaries. 

(4) The initial state to the k-state index function 
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In order to facilitate programming, expressed in the form of recursive relationships 
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The optimal index function of the initial state to the k-th state is 
 

1,( ) minBESS k kf P V                                                                (21) 

 
(5) When performing off-line optimization, only the predicted load as the original data, a full state 

of the overall optimization, can be the best path. Therefore, considering the error of load forecasting 
may affect the optimization results, this paper introduces the real-time optimization method. It can be 
seen from the optimal theory that the path from the initial state to the k-th state is optimal when 
proceeding to the k-th state in the dynamic planning process, but the optimal path must not be the whole 
The path of the optimal path of the process. Therefore, it is necessary to perform the overall optimization 
of the whole state in each state, so as to ensure that the optimal path when optimizing to a certain state 
is closer to the real optimal sub-path. 

(6) Optimization results DOD still cannot reach the error allowable value, by changing the minimum 
error corresponding to the optimal strategy to achieve the state of Sk, so 
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Return to step (2) and continue to optimize the solution until the desired optimization results are met. 

4.  Case study 
Using the network structure for the IEEE33 node system, distributed storage system installation location 
shown in Figure 4, the installation capacity shown in Table 1. The system of a typical daily load data 
and its predicted load data MATLAB is plotted as shown in Figure 5, with a predicted load error within 
± 5% [16-18]. Take the value of N = 288, Δs directly affect the speed of the calculation [9], so according 
to the different needs of the value, assuming that the initial battery capacity and termination time equal. 

 

1 5 72 8 123 106 13 144 9 11 15 16 17 18

19 20 2221
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BESS BESS
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Fig. 4 Network structure and location diagram of distributed energy storage system 

 
Table 1. Installed capacity of distributed energy storage syste 

Location Energy storage system capacity (kW • h) Rated power of converter kW 
6 400 100 

17 600 150 
31 600 150 
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Fig. 5 Typical daily load curve 

 

4.1.  Comparison of real-time optimization and off-line optimization results 
In order to reduce the impact of energy storage battery life constraints on the results, the energy storage 
DOD = 25%, k = 1, calculated by 407kW 396kWBESSP    . In order to improve the accuracy of the 
results of comparison, take Δs=1kw•5min, the optimization results shown in Table 2 and Figure 6 shows. 

It can be seen from the results that the variance of the real-time optimization result is closer to the 
optimization result using the actual load, and the error is less than the off-line optimization error of the 
forecast load. 

 
Table 2. Comparison of the results of real-time optimization and offline optimization 

Project Load variance 

Offline optimization (forecast load) 168.4 

Offline optimization (actual load) 167.0 

Real-time optimization 167.5 
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(b) Optimization results of peak shaving period 

Fig. 6 Comparison of the results of real-time optimization and offline optimization 
 

4.2.  Real-time optimization results analysis 
It can be seen from the literature [9] in the case of a certain charge and discharge depth, the number of 
battery charge and discharge to reach the peak number, if continue to increase the optimization results 
remain basically unchanged. Based on this, combined with the original data to study the energy storage 
system charge and discharge depth on the optimization results. Let  , in order to extend the life of the 
energy storage system, set the optimization process within the load variance within the load peak valley 
is not processed, that is not charge and discharge. It is of little significance to peak load shifting in the 
rated capacity of the equipment in actual situation. Take 407kW 396kWBESSP    , 10 5s kw min  , 
the optimization results shown in Table 3 and Figure 7. 

 
Table 3.Comparison of different DOD optimization results 

DOD(%) Load variance Peak power (kW) charge-discharge cycles 
25 167.5 4145 1 charge 1 discharge 
50 124.4 4060 1 charge 1 discharge 
75 85.34 4020 2 charge 2 discharge 
95 47.97 3995 3 charge 3 discharge 

 

  
Fig. 7 Comparison of different DOD optimization results 
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The results show: 
(1) When the DOD = 25% and DOD = 95% under the state of the clipping power of the odds of 5 

times the case, This is because when Δs is large, the optimization result can not be guaranteed within 
the allowable error range of the DOD. At this time, a more accurate result is obtained by changing the 
corresponding Sk. 

(2) Load variance decreases with increasing charge and discharge depth, and the number of charge 
and discharge cycles increases. In this case, when the DOD is increased from 75% to 95%, the 
optimization result is halved, and the "glitch" phenomenon occurs due to the constraint of the discharge 
power. Therefore, the above four states select DOD = 75% best. 

(3) Because the peak load with a large battery capacity, configuration converter rated power is also 
large, this paper select the converter rated power values are only the energy storage battery capacity 
value of 1/4, only in the DOD = 95% when the short term "glitch" phenomenon, so for the smaller charge 
and discharge power constraints under the optimization strategy research is of little significance. 

In Figure 7, DOD = 75% optimization results refer to the corresponding charge and discharge power 
of each node as shown in Figure 8. Energy storage system charge is negative, the discharge is positive. 
 

 
Fig. 8 Output of each node energy storage system and total charge and discharge losses 

5.  Conclusion 
The method of introducing the loss coefficient and the principle of equal capacity ratio distribution are 
used to simplify the problem. In addition to the method of reducing Δs to improve the accuracy of the 
optimization result, in the dynamic planning process, adjusting the size of Si can also improve the 
accuracy of the results, the introduction of DOD allows errors to prevent the calculation process from 
falling into an infinite loop. 

It is proposed to use the method of not dealing with the peak and valley values within the load 
variance, which can effectively prolong the service life of the energy storage system while achieving the 
better optimization effect. 

The results show that when the main function of the distributed energy storage system is used to peak 
load shifting, the energy storage and discharge power constraint in the optimization strategy has little 
effect on the optimization result, only need to be limited to the rated charge and discharge power. 
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