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Abstract. To promote comprehensive utilization of mine waste tailings and control 

ground pressure, filling mine stopes with cement paste backfill (CPB) is becoming the 

most widely used and applicable method in contemporary underground mining. 

However, many urgent new problems have arisen during the exploitation in offshore 

mines owing to the complex geohydrology conditions. A series of rheological, settling 

and mechanical tests were carried out to study the influences of bittern ions on CPB 

properties in offshore mining. The results showed that: (1) the bittern ion 

compositions and concentrations of backfill water sampled in mine filling station were 

similar to seawater. Backfill water mixed CPB slurry with its higher viscosity 

coefficient was adverse to pipeline gravity transporting; (2) Bleeding rate of backfill 

water mixed slurry was lower than that prepared with tap water at each cement-

tailings ratio; (3) The UCS values of backfill water mixed samples were higher at 

early curing ages (3d, 7d) and then became lower after longer curing time at 14d and 

28d. Therefore, for mine production practice, the offshore environments can have 

adverse effects on the pipeline gravity transporting and have positive effects on stope 

dewatering process and early-age strength growth. 

1.  Introduction 

Mine wastes tailings are unwanted, currently uneconomic, solid and liquid materials found at or near 

mine sites. Volumetrically they are one of the world’s largest waste streams, and they often contain 

high concentrations of elements and compounds that can have severe effects on ecosystem and human 

[1] [2]. To date, there are totally 14.6 billion tons of mine waste tailings in storage in China, with its 

annual emission more than 1.5 billion tons since 2011 [3]. As one of the most effective and 

environmental ways to promote comprehensive utilization of these tailings, filling mine stopes with 

cement paste backfill (CPB) has been applied not only to control ground pressure and prevent the rock 

burst phenomenon in deep mining, but also to enhance the safety treatment of surface subsidence 

caused by mined-out underground spaces (stopes) [4]. CPB is a mixture of dewatered mill tailings and 

binding agent, with added water to achieve the required consistency for transporting the CPB to the 

mine stopes [5]. The rheological and settling properties of CPB slurry are the critical success factors in 

backfill mining pipeline gravity transporting and stopes dewatering process. Another important quality 
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criterions for the hardened CPB is mechanical stability. Indeed, the paste backfill must remain stable 

during the extraction of adjacent stopes to ensure the security of the mine workers. 

Furthermore, most high-grade and easy exploitation ores in land have already been exploited. 

Contemporary mining therefore tends to focus on the extraction of ores in offshore, plateau and other 

special regions. However, along with the important practical significance and strategic value, many 

urgent new problems have arisen during the exploitation in these special regions mines owing to their 

complex topographic and geohydrology conditions. Located in Laizhou Bay area, Shandong Province, 

abundant in resource reserve, Sanshandao Gold Mine has become the first large-scale hard rock mine 

to exploit undersea using downward slicing drift mining with CPB. The orebody is located in the 

bottom of the Bohai Sea and the mining area is surrounded with coasts on three sides. There were once 

shallow islands in the ancient times in this area. And then with the geological and hydrologic state 

variations, the islands had been gradually connected with the land and become a peninsula. 

Additionally, the rock-mass joint fissures were well developed, leading to large amount of 

underground gushing water which consists of bedrock fissure brine, seawater and quaternary pore 

water [6]. Considered the economic and environmental factors, the CPB mixing water was mainly 

from the simply precipitated and filtered pit water. The adverse impacts on backfill slurry conveying, 

stopes dewatering and CPB strength had been caused by the bittern ions existed in the water. Thus the 

production schedule and safety mining were influenced.  

Analyzing the influence rule of bittern ions on CPB various properties were essential for 

formulating effective measures to improve backfill quality in offshore environments. Therefore, the 

main objectives of the study were: (1) To investigate the rheological and settling properties of CPB 

slurries prepared by different mixing water through an extensive experimental work. (2)To assess the 

CPB mechanical stability by conducting uniaxial compressive strength (UCS) tests on laboratory 

samples. (3)To study the effect rules of different mixing water on each property. 

2.  Materials and Methods  

2.1.  Materials 

The materials used for the CPB preparation include cement, tailings and water. 

2.1.1.  Tailings. Two types of tailings have been sampled from the Sanshandao Gold mine filling 

station which include unclassified tailings (UTs) and classified tailings (CTs). Table 1 lists the grain 

size compositions and specific surface areas (SSAs) of UTs and CTs particles. Furthermore, Fig. 1 

shows the particle size distribution curves of them. 

 

Table 1. Grain size compositions and specific surface areas of the tailings 

 10 )(d m  50 )(d m  90 )(d m  )(aved m  SSAs( 2 -3·m cm ) 

Classified Tailings 12.119 84.590 173.408 83.441 0.246 

Unclassified Tailings 3.423 39.744 121.254 47.955 0.658 
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Figure 1. Particle size distribution curves of the classified (a) and unclassified (b) tailings 

 

It can be noted from Table 1 and Fig.1 that UTs particles are denser than CTs, with its SSAs 1.67 

times larger than CTs. 50% of the UTs particles are smaller than 39.744 μm (d50) and only 10% are 

larger than 121.254 μm (d90). The denser particles result in higher water content in the CPB slurry, 

which is not conducive to stopes dewater. Additionally, a low slurry conveying density (65%~72%) is 

requested in the slurry gravity transporting system, which increases the CPB dewater amount in the 

backfilled stopes. Therefore, as the common tailings used in the mine filling station, the CTs are used 

in this study for preparing the fresh CPB. 

2.1.2.  Cement and Water. The cement used in this study is C-fines, a kind of specialized cement self-

produced and developed by the mine for CPB preparation. It can be noted from Table 2 that C-fines 

particles are denser than ordinary Portland cement, with its average grain diameter 46% smaller to 

5.295 μm and its SSAs 41% larger to 2.382. It can be inferred that the hydration reaction would be 

carried out more easily and the CPB strength would also be formed earlier. Hence C-fines is more 

conducive. Backfill water sampled from the mine filling station is used to mix the cement and tailings. 

Table 3 presents the bittern ion concentrations of Bohai seawater and the backfill water. The ion 

compositions and concentrations of backfill water are similar to seawater, in which Cl- concentration 

is as high as 20910 mg·L-1 and SO42- concentration is up to 2436 mg·L-1. Tap water is also used in 

other control groups. 

 

Table 2. Grain size compositions of cement 

 10 )(d m  
50 )(d m  

90 )(d m  )(aved m  SSAs( 2 -3·m cm ) 

Ordinary Portland Cement 1.739 8.558 37.353 7.754 1.689 

C-fines 1.248 5.794 22.849 5.295 2.382 

 

Table 3. Ion concentrations of backfill water and Bohai seawater (mg·L-1) 

 
K+ Na+ Ca2+ Mg2+ Cl- SO4

2- CO3
2- HCO3

- 

Backfill water 248 10374 1273 1335 20910 2436 - 179 

Bohai seawater 340 11117 372 1172 18381 2313 - 171 

2.2.  Specimen Preparation and Mix Proportions 

Table 4 lists the mixing proportions of these 3 kinds of materials, which are consistent with those the 

gold mine applies in practice. These materials are mixed and homogenized in a mixer for 4 min until a 

homogeneous CPB being obtained.  
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Table 4. Mixing proportions of the CPB samples 

Cement-tailings ratio Cement (wt%) Tailings (wt%) Water (wt%) 

1/6 10 60 30 

1/10 6.4 63.6 30 

1/16 4.1 65.9 30 

2.3.  Experimental Test Program 

2.3.1.  Rheological Tests. The rheological tests were carried out by V40_20_3to1 measuring system 

(Brookfield R/S plus Rheometer, USA) at 20±1°C. The rheological tests consisted of the following 

steps: (1) a linear increasing of shear rate from 0(1/s) to the maximum shear rate of 120(1/s) for 2 min; 

(2) the parameters including shear rate and shear stress were recorded and analyzed; (3) a report was 

generated and exported for further analysis. 

 

 

Figure 2. Brookfield R/S plus Rheometer(a) and test curves(b) 

2.3.2.  Settling Tests. The homogeneous CPB slurry was transferred into a 100mL graduate cylinder 

for settling and bleeding rate tests (Fig. 3). The interface level heights between separated water and 

CPB slurry were recorded during the settling process until a stable interface was obtained. The 

bleeding rate (%) can be obtained by the formula: 

 

        100%
( / )

w

w

V
B

W G G
   (1) 

 

Where, Vw is the mass of bleeding water; W is the mass of mixing water; G is the mass of total CPB 

slurry; Gw is the mass of CPB slurry sample transferred in the cylinder. 

 

 

Figure 3. Settling and bleeding rate tests 
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2.3.3.  Mechanical Tests. The homogeneous CPB mixtures were also poured into 70.7*70.7*70.7 (mm) 

cube shape curing moulds for mechanical tests. The specimens were then sealed and cured in a 

humidity chamber maintained at approximately 80% humidity and 23 ± 2°C for different curing times: 

7, 14 and 28 days. Uniaxial compression tests according to China’s industry standard JGJ/T70-2009 

were carried out to evaluate the mechanical properties of the prepared CPB samples. Furthermore, X-

Ray diffraction of hydration products in cement paste was also carried out. 

3.  Results and Discussion 

3.1.  Rheological test results and Discussion 

The liquid and suspended mixture of solid particles and water can be called as two-phase suspension 

fluid. Moreover, the formula relationship between shear rate and shear stress such as Bingham, 

Ostwald, Herschel-Bulkley model etc., which is defined as the flow pattern (FP), can be used to 

describe the two-phase suspension fluid rheological property [7]. Fluid of shear stress linear with shear 

rate is called as Newtonian Fluid. Otherwise, fluid with nonlinear relationship between shear stress 

and shear rate is called as non-Newtonian Fluid. According the rheological curves of CPB slurries (as 

shown in Fig. 4 and Table 3), the linear Bingham model (Eq. 2) with the highest fitting degree had 

been chosen to describe the flow pattern of CPB slurry in this study.  

 

       0     (2) 

 

Where, τ is the shear stress (Pa); τ0 is the yield stress (Pa); η is the viscosity coefficient (Pa·s); γ is 

the shear rate(1/s).  

The shear stress (τ) and shear rate (γ) could be obtained from the rheological tests. Thus the 

rheological parameters including yield stress (τ0) and viscosity coefficient (η) were calculated (as 

shown in Table 5).  

From Fig. 4 and Table 5, it could be observed that: (1) the shear stress of slurry prepared with tap 

water was higher at low shear rate. And then with the increasing of shear rate, the shear stress of 

backfill water mixed slurry became higher; (2) with the decreasing of cement-tailings ratio (from 1/6 

to 1/16), the shear stress at different shear rate increased, and the slope of linear fit curve which is 

defined as viscosity coefficient (η) in Bingham rheological model also increased; (3) the viscosity 

coefficient (η) of slurry prepared with backfill water was much higher than it prepared with tap water 

at different cement-tailings ratio. 

The viscosity coefficient (η) is an index used to reflect the viscous resistance of fluid flow. A low 

viscosity coefficient is conductive to pipeline transportation. So it can be concluded that, backfill 

water mixed CPB slurry with its higher viscosity coefficient is adverse to pipeline gravity transporting 

and more likely to lead to pipeline plugging. And the result is also in accordance with the mine 

backfill field practice. 
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Figure 4. Rheological curves of CPB slurries (Cement-tailings ratio is (a)1/6; (b)1/10; (c)1/16) 
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Table 5. Bingham model fitting results 

Cement-tailings ratio Mixing Water Flow pattern equation Stability index 

1/6 
Backfill water  =0.1103 +0.0227 R²=0.9464 

Tap water  =0.0665 +3.8706 R²=0.9506 

1/10 
Backfill water  =0.1578 +0.7074 R²=0.9281 

Tap water  =0.0819 +3.0612 R²=0.9757 

1/16 
Backfill water  =0.1754 +2.7788 R²=0.9191 

Tap water  =0.1427 +4.6392 R²=0.9709 

3.2.  Settling test results and Discussion 

The CPB slurry is often in a saturated state in the initial mixing stage. And then natural compaction 

happens due to the capillary pressure and solid particle gravity, leading to volume reduction and water 

bleeding, which is called the slurry natural settling process [8]. According to the settling curves shown 

in Fig.5, the maximum settlement appeared after 1000 sec, and the settling rate of tap water mixed 

CPB slurry is much lower. This is because the anions and cations (as shown in Table 3) have played a 

role of inorganic flocculants which can promote the formation of complexes and settling process. The 

resistance of CPB slurry in pipeline transportation is proportional to its settling rate. Hence, the 

backfill water mixed CPB slurry with a high settling rate is not conducive for pipeline transportation. 

Moreover, the bleeding water volume and bleeding rate calculated by Eq. (1) are shown in Fig. 6. The 

result shows: (1) with the cement-tailings ratio decreases from 1/6 to 1/16, the bleeding rate decreases 

from 22.4% to 19.6% (tap water) and 17.7% to 13.7% (backfill water). This is due to the higher 

content of cement with denser particles (as shown in Table 2); (2) Bleeding rate of backfill water 

mixed slurry is lower than that prepared with tap water at each cement-tailings ratio. In mine 

production practice, lower bleeding rate is beneficial for the stope dewatering process, which can 

improve the production efficiency. 
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Figure 5. Settling curves of CPB slurries (Cement-tailings ratio is (a)1/6; (b)1/10; (c)1/16) 
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Figure 6. Bleeding water volume and bleeding rate of CPB slurries 
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3.3.  Mechanical test results and Discussion 

The UCS test results showed that the UCS values for all of the samples increased with curing time and 

cement-tailings ratio (Fig. 7). And the UCS values of backfill water mixed samples were higher at 

early curing ages (3d, 7d) and then became lower after longer curing time at 14d and 28d. The three 

main hydration products including C-S-H, Ca(OH)2 and ettringite (AFt, 3CaO·Al2O3·3CaSO4·32H2O) 

in cement samples at 28d were tested and analyzed by X-ray diffraction (Fig. 8).  
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Figure 7. UCS test results of CPB samples with 

different curing time 

Figure 8. X-ray diffraction of hydration products 

in cemented samples at 28d 

 

The characteristic peaks of C-S-H and Ca(OH)2 in backfill water mixed samples were weaker. This 

is because the Ca(OH)2 products can be consumed by the SO4
2- ions in backfill water. The Ca(OH)2 

product cannot directly affect the strength. However, the C-S-H production which has positive effects 

on the strength is influenced by the Ca(OH)2 [9]. Furthermore, the characteristic peaks of AFt were 

much heighten. This is because the SO4
2- ions in backfill water are beneficial to the formation of Aft 

[10]. AFt has positive effects on the early strength growth, which explains the UCS test results at early 

ages. 

4.  Conclusion 

The CPB in offshore environments were examined experimentally in this paper. Valuable results were 

gained regarding the rheological, settling and mechanical properties of CPB in offshore environments, 

as well as those properties of CPB prepared with normal tap water. 

The results showed that: (1) with the decreasing of cement-tailings ratio (from 1/6 to 1/16), the 

shear stress at different shear rate increased. And backfill water mixed CPB slurry with its higher 

viscosity coefficient was adverse to pipeline gravity transporting. (2) Bleeding rate of backfill water 

mixed slurry was lower than that prepared with tap water at each cement-tailings ratio. (3) The UCS 

values of backfill water mixed samples were higher at early curing ages (3d, 7d) and then became 

lower after longer curing time at 14d and 28d. According to the X-ray diffraction test result at 28d, the 

characteristic peaks of C-S-H and Ca(OH)2 in backfill water mixed samples were weaker, and the 

characteristic peaks of AFt were much heighten, which explained the UCS test results. Therefore, for 

mine production practice, the offshore environments can have adverse effects on the pipeline gravity 

transporting and have positive effects on stope dewatering process and strength growth at early ages. 
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