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Abstract. In this paper, we will discuss the fully nonlinear elliptic and parabolic
equations related to classical Euclidean geometry and conformal geometry. Some
algebraic and analytic properties of concave symmetric functions and Garding’s
theory of hyperbolic polynomials are collected in the appendix. According to the
classification theory of Riemann symmetry space, we use transformation to convert
the subalgebra of a very tight part to a very noncompact subalgebra. By calculating the
projection, we calculate the section curvature of all irreducible Riemann symmetric
spaces. Using the classification theory of the maximal subfamily of abstract roots and
the control chart, we calculate the partial positive partial negative values of the
curvature of all irreducible Riemann symmetric spaces.

1. Introduction

A new model describing immiscible, compressible two-phase flow is considered. Motivation for the
following mathematical problem arises in the area of modeling multiphase flow in porous media. The
main feature of this model is the introduction of a new global pressure and the full equivalence to the
original equations. In the case of immiscible two-phase flows with more compressible fluids with
exchange between the phases, i.e. a multicomponent model, existence of weak solutions to these
equations under some assumptions on the compressibility of the fluids has been recently established.
We use a small parameter h > 0 and construct approximate solutions with a time discretization. We
show the weak controllability with the help of differential inequalities by estimating the relationship
between energy inequalities and attenuating property of weak solutions.

2. Construction and Analysis of Mathematical Model

The theory of symmetric space has a great influence on the development of differential geometry. On
the one hand, symmetric space has extremely rich geometric properties, providing us with a typical
reference. Symmetric space has a special place in the development of modern differential geometry, so
a thorough study of its properties helps us to understand geometry problems.

Pu— YAp, + VP =19 (z,t) (1)

divpP =0 )
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V(z,0) = (), P(z,0) =po(z) inf2 3

where p,, p,, 8 are given functions, AP is a Laplacian with respect to the

variablex € Q, p = p(¢, x) is an unknown function, y > 0 is a fixed positive number, 9 € L*(Q),

po € W2 (§2) are given external forces, and satisfying the following conditions:
HpOHWI%'HwOHng]. (4)

Now let us define an operator, we consider

felyuel (R',L,) and >+2<1 )
p q
u=v —v—-u,and w =p— p— w,. (6)

One can easily verify that (u, w) satisfies the following system:
d+a|x'< f'(x,t)<d(1+[x]'),Vs € Q (7)
And
u, —divAVu® — Au, = f(x, t) (8)

For some positive a, pe [1/2,2),C >0,and ¢ >0, we have a weak solution, which fulfills
additionally

0.,p—ANAp — (p+ po) = F(p,w) in £, 9)
(w~+ wo)divp + p(w+v) - Vw =G (u,w) on 0N (10)

We have several techniques to prove the existence of weak decay solutions with respect to the
phase space F (u,w) and G,(u,w); and have additional nice properties with energy inequality for

almost all times or solutions with weak decay properties for £ — oo, this has been studied recently by
several people, e.g. YM. Qin, Ebihara, Xin Liu [1-6] etc.

n-uD(p) -7+ f-p7=0 on 9N (11)
n-p=0; p-w=0 on 02 (12)

As a model of nonlinear function equation, for (u,w) € w; (£2) X w, (§2), equation (1)-(3)admits a
global weak decay solution as large initial data, which was proved by Y.M. Qin, Xin Liu, X.G. Yang,
Lan Huang etc [2-3]. where (6) -(8) are given functions and F, (u, w) and G, (u, w) F(u, w) and G(u,
w) are regularizations to F(u, w) and G(u, w). It can be obtained by replacing the functions uo and wo
by their regular approximations u; and w§, In two, three-dimensional case, they describe the
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viscoelastic solid of anti-plane  shear  action. While B=b—2un-P 17— fr
andn - u|l r=w—p and wy|r =6, —1.
Ulteriorly, X.G. Yang gave the proof of global controllability with smooth solution in the case of

small initial data. Make use of combining L” -theorem of Sobolev space and semigroup theorem of
operators, In order to prove the following theorem it is enough to prove the existence of a solution (u,

w) to the system (3)-(3) provided that ||u0 w? and ||P|| are small enough.

Wﬁ > Wo W[l;l/p )

d'(t) +k |w@)—w (@)

v+l
2

"d(n) < kod ()7 + xed (£)" wy (0)

(13)

As we already mentioned, the presence of the term u-Vw in the continuity equation makes it
impossible to show the compactness of a solution operator if we try to apply fixed point methods
directly to the system (11).

Let us define an operator P.:P C W2(2) XW}(£2) = W2(2) XW,(£2), where (p.,w.) is a

solution to (1)-(3),
¥ T n, 1 1

If ”W(f)” <k,(1+1) *, and ||W(t)||p <t(l+1) 75(57)). Here, Q is a bounded domain in R" with a

smooth, AQ is said to be Cclass boundary, which satisfies the following uniform hyperbolic
assumption.
Definition 1. By an elliptic regularization to the system we mean a system (p.,w.) = P.(p.,w.).

For some constants p,,M >0, 7€ H 4 [0,+0) satisfies:

4 v

(1) +1,(1+0) 2 x0) 7 <o) 47,141 y(ey T @) (14)
t(v)>0,>0and 7(v*) + 20,(V)V* =26, >0 (15)
(v*) <20,V W+7" (V)M <o (16)

3. Main Results
we shall make a remark concerning the term f(x, t)e H' ([O, wl, I’ (Q)) , that is rather unexpected

in an energy estimate. Its presence is due to the functions u(t ) on the (13)-(16). However, this term

does not cause any problems when we apply (15) to interpolation, since it is multiplied by a small
constant.

Lemma 1. Assume thatf(x, t) eH' ([0, a)], r (Q)) are small enough and f is large enough. Then

for sufficiently smooth solutions to system (1)-(3) the following estimate is valid

C*(p,w) NF(p,w) NG (p,w) (17)
o 90,0 ol s clasion), s
/ (oP?(u) +divZp)dt +/ (p+ %u) IuldT:/ (F+C(z,t))dx (19)
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Where C, F, G is the dual space of P.
Lemma 2. Suppose that f(x, t)e H' (I, r (Q)) is a solution to (1)-(3). Then the following

estimate is valid provided that the data u,, u, € H : (Q)ﬂHé (Q) are small enough and o is large
enough || f (t)||2 + || f (t)||2 = O(e‘“’) s and lu, |* +|Au| + Ve, @ + [ Aw, | +'[tw||Vu” ['ds < e where the

constant C depends on the data but does not depend on”uO” P ||u1 || ,» for some constant & >0, and

/(oq (w) - Awp)dz S/pwVpl(t)dt+/G(u,p)Fds (20)

/(ag(w))deiv(w+w0)dx Se/ w?(8,,p(w) +w+wOVG(w))dx+/quF(u,p)dt (21)

Under assumption H!, the problem admits a unique solutionu(t) in the class and further, for some
2
ds, i= 0,1,3, the estimate. Holds

ai
8_ff(s)

constant HF(Z)HZ +

F, (t)”z = o(e_“’) ,as M = Iow

(22) for some constant p,, M >0, where C > 0 is a constant depending on”u0 ot ||u1

H?"
Theorem. Assume that @, @, (t) = ¢ " are small enough and f is large enough. Then there exists a

solution (v,0) €W, |, ()], <A +)", @, e H* (Q)NH; (0), @ € H; (9), f(x, )€ Hy (O,

r (Q)) and f'(x, t) e W} (G), r (Q)), then problem(1)-(3) hold a unique local weak solution @(¢)
with the following estimate to the system (1)-(3):

lu—ally+ lp— Py <E (22)
V() + A1+ t)% y(t)(H%K) < 2 (02 + A1+ y(0)" - Vaa(r) (23)

/[G(w)]wAwde/[G(w)]wlAw|2d:c+/wVwF(w) (w4 up)dz (24)

where E is a constant depending on the data, i.e. on (E,p)in, b, the constants in the equation and the
domain, that can be arbitrarily small provided that the data is small enough.

Moreover, if ””o” et ”u1 || > and (v,p) are two solutions to (1) satisfying the estimate (2) then

<CIVFW) |l 1,10l o < E (IPll31G113,) (25)

[ wwvin@) e

4. Proof of Main Result

4.1. Proof of Theorem.
Taking the two-dimensional vorticity of (2.4)1 we get



ESMA 2017 IOP Publishing
IOP Conf. Series: Earth and Environmental Science 108 (2018) 022026  doi:10.1088/1755-1315/108/2/022026

E(n)= {|| O +], j dadx} (26)
O 01 {0~ ), 1) (G, )~ o)
[[(fow0))dsdy < [ [Vao o) ds +~ {”le(t)” [ [ 2 () azay } 28)
Let us define
= (w+ P)diwF.+ G(w)W.
where (w.,u.) is a solution to (1)-(3) and G(w) is defined. Then
q= p2p2 <-+oo,p = g 1 and w. satisfies the following equation

IVGI 2, = C[IF (w,) | + 1Gllyrsney + Nl g + 1F ] + EIW ] (29)

gﬂpxwm+z@nv@J) w+%«xg4p4@gﬂ (30)

In order to prove the prior estimates on H'-norm of the velocity and L2-norm of the density for the
system (1)-(3), we estimate the following on U = {u€ H*(2,R?):u - p|3Q =0)

5’(t)+/11(1+t) w(t) ”<ﬂ,25()[1 1J+g(1+t)’(””'>5(t)$ €2))

Where ¢ is a small positive number which will be fixed, Then we arrive at

0
Gt( 52o, (o) +2(a, (a)),a))j 2 +0|(Vu)[ (32)
using (3) and the Korn inequality, we get
T((D’(VW),VW)—F%U(G(V),V)SO'(g,W) (33)

Using Hoélder inequality, obviously we let 4, be small enough. Now we have to deal with the
term with &,7. Due to the boundary conditions, we get

ﬁ?ﬂLW||+Aawm+CW4h

E(&,0)= M o - (34)

Thus, the term will be negative provided thate, A be small enough.
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n a P
J‘g(|u|2 +|a)0|4)|u = dx < 0'(”0 5+ ||a)0||;] ||a) f[gl (35)
il +2 ¥ + n+l—
o ol ool (1 el <A (Bl Al 0

Where the constants C,, A depend only oné&. The last term is the most inconvenient and it must be

estimated by W," -norm. Fortunately, it is multiplied by a small constant that turns out in the above
lammal and lemma2. We have

EEO)=(o(V)a)+ 20+ L2 oull, P, o)
ClIE ) [ly2 |G W) 12 < B (u,0) |72 (38)

Now we integrate first and second component by parts. In the second component we use the fact
that the integration interval does not depend onA and 7. We get

/F < (IG:+Clullw,) I Fl 4, /G < (IF| ;2 +Cllullw,) |Gl 4, (39)
2 2
The terms of above integrals of F and G can be estimated in a direct way:
OSE(Eu(t))S/F, /G < Bl (u,v) |, (40)
2 2

Combining this estimate, applying again the elliptic theory, substituting the Helmholtz decomposition,
the proof is thus completed.

5. Conclusion

To calculate the upper bound or lower bound of the curvature of an irreducible symmetric space, its
curvature is non-negative for a compact symmetric space, and its curvature is not positive for a non-
compact symmetric space. We consider the non-compact irreducible symmetric space, the maximal
non-compact subalgebra is the maximal exchange subspace, and the associated root rank is the rank of
symmetric space. Therefore, we realized the asymptotic estimation and existence.
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