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Abstract. Reversible phosphorylation of proteins is one of the most crucial types of 
post-translational modifications (PTMs). And it shows significant work in diversified 
biological processes. However, the separation technology of phosphorylated peptides 
is still an analytical challenge in phosphoproteomics, because phosphopeptides are 
alway in low stoichiometry. Thus, enrichment of phosphopeptides before detection is 
indispensable. In this study, a novel temperature regulated separation protocol was 
developed. Silica@p (NIPAAm-co-IPPA)-Ti4+, a new Ti(IV)-IMAC (Immobilized 
Metal Affinity chromatography) materials was synthesized by reversible addition 
fragmentation chain transfer polymerization (RAFT). By the unique thermally 
responsive properties of poly(N-isopropylacrylamide) (PNIPAAm), the captured 
phosphorylated peptides could be released by changing temperature only without 
applying any other eluant which could damage the phosphopeptides. We employed 
isopropanol phosphonic acid (IPPA) as an IMAC ligand for the immobilization of 
Ti(IV) which could increase the specific adsorption of phosphopeptides. The 
enrichment and release properties were examined by treatment with pyridoxal 5’-
phosphate (PLP) and casein phosphopeptides (CPP). Two phosphorylated compounds 
above have temperature-stimulated binding to Ti4+. Finally, silica@p (NIPAAm-co-
IPPA)-Ti4+ was successfully employed in pretreatment of phosphopeptides in a tryptic 
digest of a-casein and human serum albumin (HSA). The results indicated a great 
potential of this new temperature-responsive material in phosphoproteomics study. 

1.  Introduction 
Protein phosphorylation is a reversible post-translational modification. And it plays important roles in 
difference cellular processes and development, such as cell cycle control, signaling intermediates, 
division and so forth. [1-4]. Separation, identification and characterization of phosphorylated 
peptide/properties and phosphorylation sites are essential to phosphoproteomic studies [5]. Technique 
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based on liquid chromatography mass spectrometry (LC-MS) has become an major method in 
phosphoproteomic analysis [6,7]. However, phosphopeptides are always in low stoichiometry. And 
large quantities of unphosphorylated peptides and complex impurities exist in bio-samples, which 
interfere the detection of phosphopeptides greatly [8]. Therefore, direct analysis of phosphopeptides 
using LC-MS is not possible without pre-enrichment. 

A great many approaches for highly efficient phosphopeptide enrichment have been developed, 
such as immobilized metal affinity chromatography (IMAC) [9,10], metal oxide affinity 
chromatography (MOAC) [11], ion exchange chromatography (IEC) [12] and so on. Among them, 
IMAC is the most frequently used because of its execllent performance [13]. IMAC is composed of 
substrate, chelating agent and metal ions. Metal ions like Ti4+, Zr4+could coordinate to phosphate 
groups specificity due to metal(IV) phosphonate chemistry [14]. More than one phosphate molecule 
are coordinated to one metal ion and more than one metal ion are coordinated with one phosphate 
group, which result in stable binding between metal(IV) ions and phosphate molecules [15]. Metal 
ions are immobilized on various substrates through chelating agents and chelating agents effect the 
performance of IMAC greatly. Nitrilotriacetic acid (NTA) and iminodiacetic acid (IDA) are traditional 
chelating agents. However, they will cause non-specific adsorption especially the acidic amino acid 
residues. To promote selectively isolation of phosphopeptides and decrease the non-specific 
adsorption, chelating agents with phosphate groups has been developed [16]. Phosphate groups in 
chelating agents could attract to phosphopeptides due to the affinity force. Zhang [17] immobilized 
Ti4+ to magnetic nanoparticles (MNPs) by adenosine triphosphate (ATP). There are three phosphate 
groups in ATP, which resulting in the increase of the biological compatibility and hydrophilicity. 
Because more phosphate groups provide more active crosslinked metal phosphonate sites. Therefore, 
were increased. Although more phosphate groups in chelating agents showing better specificity, 
multiple synthesis steps and stirring time in immobilization of ATP leading to the destruction of 
substrates and the decrease of metal irons. Herein, isopropenyl phosphonic acid (IPPA) was chosen as 
chelating agents. The copolymerization of IPPA and poly(N-isopropylacrylamide) (PNIPAAm) is easy 
commonly, and could be finished within five hours in one step. Silica substrates used in our 
experiments is not hard as MNPs, shorter stirring time is benefit to the protection of silica shape. 

However, the release of adsorbed proteins require the changing of mobile phases or using eluent. 
The mobile phase and eluent are always harsh denaturants or contain high concentration of organic 
solvents sometimes, which lead to the damagement of the activity of analyte and the efficiency of 
separation [18]. Therefore, altering the mobile phase or using eluent is need to be changed. To solve 
the above-mentioned problems, we employed a simple approach to release targeted proteins by 
changing the stationary phase temperature of HPLC only. PNIPAAm polymer plays an significant role 
in protocol due to its unique thermal-properties. PNIPAAm is a typical tempreture-reponsive polymer 
and it has been commonly applied in biomedical applications [19-21] as drug carriers [22,23]. The 
lower critical solution temperature (LSCT) of PNIPAAm is 32.5℃ and it is similar to physiological 
temperature. In our protocol, PNIPAAm act as an temperature switch during the release and capture of 
phosphopeptides. Molecular conformation and hydrophilic/hydrophobic properties of PNIPAAm have 
a sharp change around LCST [24]. When the temperature is lower than LCST, the polymer chain will 
be extend. Therefore, the functional groups modified on the polymer chains will be exposed and 
reacted with target proteins sufficiently to capture the target proteins. However, when temperature is 
higher than LCST, polymer chain will have transformed from stretch to curl up shape in aqueous 
media. And the space around the silica surface will reduced. Captured proteins will be released by the 
extrusion of polymer chains. Recently, our group have synthesized a series of switchable materials 
based on PNIPAAm for capture, separation and enrichment of proteins/peptides by changing 
temperature only [25-28]. 

Herein, a novel modified temperature-responsive chromatographic stationary material silica@p 
(NIPAAm-co-IPPA)-Ti4+ was synthesized by reversible addition fragmentation chain transfer 
polymerization (RAFT). IPPA was chosen as the chelating agents for the highly efficient enrichment 
of phosphopeptides. The copolymerization of IPPA and NIPAAm is easy and timesaving leading to an 
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unbroken shape of silica. To obtain a better temperature-sensitivity, grafting conformations and 
detection pH were optimized. Efficiency of protein enrichment was examined by using pyridoxal 5’-
phosphate (PLP) and casein phosphopeptides (CPP) as model phosphonate molecule. To further 
evaluate their performance on the enrichment of phosphopeptides in complex sample matrices, it was 
applied for enrichment of a tryptic digest of HSA and a-casein. This was the first time that thermal-
responsive chromatography materials was used in enrichment of phosphopeptides.  

2.  Materials and methods  

2.1.  Reagents and materials  
CPP, a-casein and HSA were purchased from Sigma-Aldrich. N-isopropylacrylamide (NIPAAm) was 
obtained from TCI (shanghai, China). Azodiisobutyronitrile (AIBN), (4-pyridyl) dimethylamine 
(DMAP), N, N'-diisopropylcarbodiimide (DIC), formic acid (FA) and trypsin were obtained from J&K 
Chemical (Beijing, China). 3-Aminopropyl silica (silica@NH2, diameter, 5 μm; pore size, 100 Å) was 
purchased from Born-Again technologies (Tianjin, China). Hydrocortisone, prednisolone acetate, 
dexamethasone, hydrocortisone butyrate was purchased from National Institute for Food and Drug 
Control (Beijing, China). Urea ammonium bicarbonate, Dithiothreitol (DTT) and Indole-3-acetic acid 
(IAA) were purchased from Sinopharm Chemical Reagent Co. Ltd (Beijing, China). Adenosine 
monophosphate (AMP) and N-AcryloxysucciniMide (NAS) were purchased from Alfa Aesar 
Chemical (Tianjin,China). 

2.2.  Synthesis of silica@CTA 
3-Aminopropyl silica (1.5 g), N-acetyl glycine (0.809 g, 0.55 mmol), S-1-Dodecyl-S′-(α,α′-dimethyl-
α′′-acetic acid) dithiocarbonate (CTA) [18] (0.486 g, 1.34 mmol), DMAP (0.6 g, 4.9 mmol) were 
mixed in dichloromethane (60 mL) in a round bottom flask. Grafting density of polymers were 
controlled by the molar ratio of CTA and DMAP, and it was marked after the name of silica, e.g. 
silica@p (NIPAAm-co-IPPA)-Ti4+ 50% means the density of material is 50%. Reaction mixture was 
cooled to 10 ℃ under nitrogen. After vacuuming and purging the reaction mixture with nitrogen three 
times, DIC (6 mL) was then added over 30 mins. The reaction was stirred for 48 hrs at room 
temperature and then exposed to air to stop the reaction. The products were washed with 
dichloromethane, methanol and ethanol three times. Silica@CTA was then generated after drying 8 
hrs at 60 ℃. 

2.3.  Synthesis of synthesis of silica@p (NIPAAm-co-IPPA)-Ti4+  
Silica@ CTA (0.3 g), NIPAAm (2.165g, 19.13 mmol), IPPA (0.240g, 1.92 mmol ) and DMF(12 mL) 
were mixed in a round bottom flask with three necks. The reaction mixture was cooled to 10 ℃ under 
nitrogen. After vacuuming and purging the reaction mixture with nitrogen three times, AIBN (25.0 mg, 
0.088 mmol) was then added. The reaction was stirred for 5 hrs at 70 ℃ and then exposed to the air to 
stop the reaction. The products were washed with DMF, ethanol and deionized water several times. 
Silica@p (NIPAAm-co-IPPA) was then dried 8 hrs at 40 ℃. 

Silica@p (NIPAAm-co-IPPA) were incubated in an 100 mM Ti(SO4)2 solution for 4 h at room 
temperature to immobilize Ti4+ cations. Finally, the prepared silica@p (NIPAAm-co-IPPA)-Ti4+ were 
washed with 0.1% (v/v) formic acid (FA) three times and storage in 0.1% (v/v) FA.  

2.4.  Sample preparation   
HSA and a-casein (1mg) were dissolved in 1 mL denaturing buffer and incubated for 4 h. The 
denaturing buffer was composed of 50 mM ammonium bicarbonate and 8 M urea. After that, 20 µL 
DTT (10 mM) was added and the solution was incubated for 2 hrs at 37 ℃. Then, 10 µL IAA (100 

mM) was added and the obtained solution was incubated for one hour in the dark at 30 ℃. Then, the 

mixture was diluted by 8-fold ammonium bicarbonate (50 mM) and incubated for one day at 37 ℃ 
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with trypsin and the ratio of enzyme and substrate was 1:50 (w/w). After the desalinization by SPE 
column, we lyophilized the peptide solution and stored the obtained peptide at -40℃.  

2.5.  Property examination of the thermal-responsive materials 
Chromatographic stationary phase columns was made by our own. Silica materials synthesized as the 
above-mentioned methods were pushed into the Stainless-Steel column (2.1 mm × 50 mm i.d) with 
methanol as the solvent under the high-pressure pump. Properties of the materials are examined as 
HPLC columns. The columns were connected with HPLC with UV detector and column temperature 
controller. The ability of the columns to retain four steroids at different temperatures were approved. 
Phosphorylated small molecules (PLP) and macromolecules (CPP) were employed to investigate the 
temperature-controlled capture and release properties of silica@p (NIPAAm-co-IPPA)-Ti4+.  

2.6.  Instrumentation 
Fourier transform infrared (FTIR) spectra were obtained on PerkinElmer (Boston, MA) FTIR 
spectrometer. All HPLC spectra were obtained on Shimadzu LC-20AT HPLC with Shimadzu SPD-
20A UV detector. Temperature was controlled by CTO-20AC column controller (Shimadzu, Japan).. 
X-ray photo electron spectroscopy (XPS) spectra were obtained using PHI Quantera Ⅱ (Ulvac-PHI). 
Scanning electron microscope (SEM) results were obtained using JSM-5600LV (Agilent Technologies, 
USA). Thermal Gravimetric Analyzer results were obtained using DISCOVERY (TA, USA).  

3.  Results and discussion  

3.1.  Preparation and characterization of materials 
In phosphoproteomics analysis, HPLC/MS methods have been widely used to discovered and 
identified phosphopeptides. However, phosphopeptides were sub stoichiometry and their signals were 
always disturbed by abundant proteins. Therefore, a great number of enrichment methods and 
materials have been developed. Traditionally, the enriched phosphopeptides are released by changing 
mobile phase or eluant. However, they always damage the activity of phosphopeptides. This is one of 
the major hinderance in phosphoproteomics analysis. Therefore, a switchable chromatographic 
materials were synthesized for selectively capture and release of phosphopeptides with simpler 
changing temperature instead of the conventional changing of mobile phase. 

Silica@p (NIPAAm-co-IPPA)-Ti4+ was prepared via surface initiated Reversible Addition-
Fragmentation Chain Transfer Polymerization (RAFT) according to the procedures shown scheme 1. 
The shape of silica was protected well and there was no difference of silica before (figure 2a) and after 
(figure 2b) synthesized. The modified polymers have been successfully grafted onto silica surfaces and 
it was confirmed by FTIR (Figure 3) and XPS (Table 1) spectra of the materials. The ratio of modified 
polymer P(NIPAAm-co-IPPA) on silica was further determined using TGA in a quantitatively way. 
And the principle of capture and release was shown in figure 1.  
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Scheme 1. Synthesis of thermal-responsive polymer modified silica. The yellow dot represents 

silica. 

 

Figure 1. The working principle of silica@p (NIPAAm-co-IPPA)-Ti4+. 

 

Figure 2. SEM of silica@NH2 (a) and silica@p (NIPAAm-co-IPPA)-Ti4+(b). 
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Figure 3. FTIR of silica@PNIPAAm and silica@p (NIPAAm-co-IPPA). a: silica@p (NIPAAm-co-
IPPA). b: silica@PNIPAAm. 

Table 1. The XPS results of silica@NH2, silica @CTA50% and silica@p (NIPAAm-co-IPPA)-Ti4+ 
50% 

3.2.  Temperature-responsive chromatography for steroids separation 
We selected four steroids Hydrocortisone, dexamethasone, hydrocortisone butyrate, and prednisolone 
acetaterichment as analytes to evaluate the separation and thermal-responsive performance of the silica 
materials. Silica@ p(NIPAAm-co-IPPA)-Ti4+ was packed into stainless steel column [29,30]. The 
separation was investigated at 10 °C, 30 °C and 50 °C (Figure 4). Retention time of the steroids was 
prolonged as the temperature increased. As shown in figure 4, the number of peaks were increased 
with the increasement of temperature. In figure 4a, steroids had no retention on the column and there 
was only one peak at 10 °C. Four steroids were totally separated and there were 4 peaks occurred at 
50°C. Therefore, four steroids were separated effectively by changing the stationary phase temperature 
only. The results indicated an excellent thermal-responsive ability of silica@p (NIPAAm-co-IPPA)-
Ti4+.  

The separation properties of materials was resulted from the configuration change of polymer 
chains mentioned above. And the configuration was related to the hydrogen bonds which generated 
between H2O and amide group of PNIPAAm [27]. However, as for silica@p (NIPAAm-co-IPPA)-Ti4+, 
there were metal ions modified on the polymer chains which damage the hydrogen bonds. And the 
thermal-responsive properties would get worse at the present of Ti4+. As shown in figure 5, there were 

Element 
C1s 
(%) 

O1s (%) 
N1s 
(%) 

S2p 
(%) 

P2p 
(%) 

Ti 2p 
(%) 

silica@NH2 39.61 58.94 1.45 0.00 0.00 0.00 
silica @CTA 50% 46.50 49.68 2.37 1.44 0.00 0.00 

silica@p(NIPAAm-co-IPPA)-Ti4+ 50% 39.67 51.90 4.14 1.83 0.62 1.83 
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chromatograms of steroids separated by materials with different Ti4+ content. By the increase of Ti4+, 
the retention time of steroids was shorter. Therefore, the grafting density and ratio of silica@p 
(NIPAAm-co-IPPA)-Ti4+ should be optimized before other detection. And the results was shown in 
figure 6 and 7. The best grafting condition was around 50% (grafting density) and 21.8% (grafting 
ratio) (Figure 7c) and it was different form our previous studies [31]. 

 

Figure 4. Chromatogram of steroids separated on silica@p (NIPAAm-co-IPPA)-Ti4+ columns. Mobile 
phase used is water; flow rate, 0.1 mL/min; Peaks: 1, hydrocortisone; 2, dexamethasone; 3, 

hydrocortisone butyrate; 4, prednisolone acetate. detection wavelength, 254 nm.  

 

Figure 5. Chromatogram of steroids separated on polymer modified silica columns. a: silica@p 

(NIPAAm-co-IPPA)-Ti4+; b: silica@p (NIPAAm-co-IPPA). The temperature is 50℃. Mobile phase 
used is water; flow rate, 0.1 mL/min; detection wavelength, 254 nm. Peaks: 1, hydrocortisone; 2, 

dexamethasone; 3, hydrocortisone butyrate; 4, prednisolone acetate. 
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Figure 6. Chromatogram of steroids separated on silica@p (NIPAAm-co-IPPA)-Ti4+ columns. The 
grafting density is 30%, the grafting ratio is a.7.4%; b.15.2%; c.18.0%. Mobile phase used is water; flow 

rate, 0.1 mL/min; detection wavelength, 254 nm. Peaks: 1, hydrocortisone; 2, dexamethasone; 3, 
hydrocortisone butyrate; 4, prednisolone acetate. 
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Figure 7. Chromatogram of steroids separated on silica@p (NIPAAm-co-IPPA)-Ti4+ columns. The 
grafting density is 50%, the grafting ratio is a.8.0%; b.14.1%; c.21.8%. Mobile phase used is water; 

flow rate, 0.1 mL/min; detection wavelength, 254 nm. Peaks: 1, hydrocortisone; 2, dexamethasone; 3, 
hydrocortisone butyrate; 4, prednisolone acetate.  

3.3.  Separation of adenosine monophosphate (AMP) and N-AcryloxysucciniMide (NAS)  
After the optimization of grafting conformation, silica@p (NIPAAm-co-IPPA)-Ti4+ was used in 
separation of phosphate compounds. Adenosine monophosphate (AMP) and N-AcryloxysucciniMide 
(NAS) were chosen as analytes. AMP, a common biochemical reagent with a phosphate group was 
widely used in biochemistry. And NAS was chosen as a contrast agent without phosphate group. As 
shown in figure 8, there was only one peak in chromatogram at 50℃ which indicated that AMP and 
NAS were not separated. However, as the decrease of column temperature, two compounds were 
separated totally and shown as two peaks in chromatogram at 10℃. The results could be explained by 

the configuration changed at different temperature. The polymer chains were crimp at 50℃ and the 
Ti4+ modified on chains was masked. Therefore, AMP could not reacted with Ti4+ . However, the 
situation was totally changed at 10℃ . The polymer chains were stretched and Ti 4+ exposed 
sufficiently when the temperature lower than LCST, which resulted in the retention of AMP. 
Therefore, AMP was separated from NAS. The results shown that silica@p (NIPAAm-co-IPPA)-Ti4+ 
could separate phosphate compounds by changing temperature. 
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Figure 8. Chromatogram of NAS and AMP. Peak 1: NAS. Peak 2: AMP. From top to bottom, the 
column temperature is 50℃,30℃,10℃. Mobile phase: pH 3.2, ACN 50% and AC. 

3.4.  Optimization of detection condition  
The pH of mobile phase in separation of adenosine monophosphate (AMP) and N-
AcryloxysucciniMide (NAS) is 3.2 (50%ACN and AC), which was the best pH in previous study 
about Ti4+-IMAC. However, as for the temperature-responsive materials, the pH influenced the 
properties of capture and release. Therefore, pH of mobile phase must be optimized before employing. 
As shown in figure 9, same volume pyridoxal 5’-phosphate (PLP) was injecting at very beginning at 
different pH, and it shown different retention time. From pH 7 to 3, the retention time was getting 
longer which is similar to previous study. However, PLP shown no retention when pH was lower to 1. 
This could be explained by acid-base principle. When the mobile phase is extremely acidity, the 
protonation degree of the phosphate group is enhanced and the hydroxyl group will be present in the 
form of H +. Therefore, phosphate group could be captured by Ti4+. The result indicated that the best 
capture pH of mobile phase was 3.  

However, the final performance of silica@p (NIPAAm-co-IPPA)-Ti4+ column was determined by 
not only capture ability but also the release ability. And figure 10 shown the release ability of column. 
As shown in figure 10d, NAS and PLP were injected at beginning together when the temperature was 
10℃. The NAS shown no retention and it was rapidly eluted from the column and shown as a single 
peak at about 5min (figure 10d). There was no peak of PLP before 20min which indicated that PLP 
was captured by column at 10℃. When we are altering pH from 7 to 9 at 20min. The captured PLP 
was eluted and shown as a peak from 40 to 50 min. However, when we released PLP by increasing 
temperature from 10℃ to 50℃ after 30 minutes (figure 10 a,b,c), released quantity of PLP (peak area) 
was related to pH greatly. And the best released pH was 7 because the peak area of PLP was the 
biggest among figure 10a, b, c. Although PLP was captured greatly at pH 3, there shown no peak 
when we release the PLP by changing temperature (figure 10a). Considering all these two effects, the 
optimized pH was 7 and we chose water as the mobile phase of silica@p (NIPAAm-co-IPPA)-Ti4+ . 



11

1234567890

ESMA 2017 IOP Publishing

IOP Conf. Series: Earth and Environmental Science 108 (2018) 022018  doi :10.1088/1755-1315/108/2/022018

 
 
 
 
 
 

 

Figure 9. Chromatogram of PLP separated on polymer modified silica columns at different pH.flow 
rate, 0.1 mL/min; detection wavelength, 290nm.  

 

Figure 10. Chromatogram of NAS and PLP separated on polymer modified silica columns at different 
pH. flow rate, 0.1 mL/min; detection wavelength, 290 nm.  

3.5.  Sepearation of casein phosphopeptides (CPP) using silica@p (NIPAAm-co-IPPA)-Ti4+  
As for silica@p (NIPAAm-co-IPPA)-Ti4+, Ti4+ could capture phosphopeptides due to the coordination 
chemistry. CPP, a typical phosphopeptides, was widely used as the analyte in phosphonate proteomics 
and chose as a model protein here. We chose 10 ℃ to 50 ℃ as the temperature range, which will not 
damage the proteins. As shown in Figure 11a, CPP was injected at the very beginning. There was no 
peak observed within 120 mins when the sample was injected at 10 ℃. This indicated that CPP was 

captured completed by the column at 10 ℃. However, when the sample was injected at 10 ℃ and 

temperature was increased to 50 ℃ after 30 minutes, there was one sharp peak observed between 30 to 
40 mins (Figure 11b). There was no peak before 30 min which indicated CPP was captured completely. 
When temperature was increased to 50℃, CPP was released rapidly and shown as a sharp peak. The 
release and capture of CPP was controlled by temperature only in above, and temperature seem to act 
as a switchable signal. These results indicated that silica@p (NIPAAm-co-IPPA)-Ti4+, the polymer 
modified silica with Ti4+, showed thermally controlled properties to efficiently capture and rapidly 
release phosphopeptides without changing the constitute of the mobile phase.  
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Figure 11. Chromatogram of CPP on silica@p (NIPAAm-co-IPPA)-Ti4+ column. a: injecting the 
sample at 10 ℃ and increasing temperature to 50 ℃ at 30 min. b: injecting the sample at 10 ℃ and 
stay in the temperature 2 hours. Flow rate, 0.1 mL/min; detection wavelength, 254 nm. mobile phase: 

water. 

The enrichment efficiency of CPP on silica@p (NIPAAm-co-IPPA)-Ti4+ column was further 
examined. As shown in figure 12b, we injected CPP solution three times into the column at 10℃. And 
the impurities eluted quickly and shown as three small peaks around 0,20 and 40 min. However, there 
were on peaks of CPP at 10℃ which indicated that it was retained by silica@p (NIPAAm-co-IPPA)-

Ti4+ column. And when we rose temperature to 50℃, the captured CPP was released rapidly with an 
increased peak area (Fig. 12b). The release peak in figure 12b is much bigger than that in figure 12a 
which was injected only one time. The results shown that it was possible to enrichment 
phosphopeptides via a thermally controlled capture and release mechanism.  

 

Figure 12. Chromatogram of CPP on silica@p (NIPAAm-co-IPPA)-Ti4+ column at different sample 
size. Sample size: a:3uL, one injection (red line); b:8uL, three injections (black line). flow rate, 0.1 

mL/min; mobile phase: water. detection wavelength, 254 nm.  

3.6.  Separation of tryptic digest of a-casein and human serum albumin (HSA) 
As for the detection of phosphopeptides, it is important to removal the abundant proteins from the 
complex biological matrices. The human serum is one of the most complex bio-sample and HSA is the 
most abundant proteins in it. To simulate the detection of phosphopeptides in human serum. HSA and 
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a-casein were mixed together at a concentration ratio of 1:5. The silica@p (NIPAAm-co-IPPA)-Ti4+ 
column was employed for separation of phosphopeptides in figure 13a, there was no retention at 50 ℃ 
and the sample was rapidly eluted from the column as a single peak. And the same trend was observed 
in figure 13c which the detection temperature was 10℃. However, the peak area at 10℃ (figure 13c) 

was smaller than that in 50℃ (figure 13a) and this indicated that the phosphopeptides were captured in 

the column. When we injected the sample at 10℃ and raised the temperature to 50℃ at 25min, the 
captured phosphopeptides was released and shown as a peak occurred between 30 to 32min (figure 
13b). The results shown that the capture and release of the phosphopeptides using silica@p (NIPA 
Am-co-IPPA)-Ti4+ column could be done by changing temperature simply without changing the 
mobile phase or using another eluent. It was a green and facile protocol in proteomics.  

 

Figure 13. Chromatogram of CPP and HSA on silica@p (NIPAAm-co-IPPA)-Ti4+ column. a: 50℃; b: 

from 10℃ to 50℃; c:10℃. flow rate, 0.1 mL/min; detection wavelength, 254 nm. mobile phase: water. 

4.  Conclusion  
In conclusion, we prepared a novel temperature-responsive chromatographic material silica@p 
(NIPAAm-co-IPPA)-Ti4+. The capture and release of phosphopeptides is achieved by changing 
temperature only. This is an simpler way compared to altering the mobile phase or using eluent. The 
grafting configuration and the pH of mobile phase were optimized to achieve better temperature-
dependent retention changes for steroids, pyridoxal 5’-phosphate (PLP) and casein phosphopeptides 
(CPP). The mobile phase was water in our experiments which is a environment-friendly reagent. 
Finally, the column was tested for a bio-sample analysis of a tryptic digest of HSA and a-casein. The 
phosphopeptides were captured efficiently and released rapidly by changing temperature only. The 
results indicated that silica@p (NIPAAm-co-IPPA)-Ti4+ have great potential for the enrichment of 
phosphorylated proteins from biological samples in a temperature-regulated way.  
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