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Abstract. The possibility of using INLA (Integrated Nested Laplace Approximations) method 

for the recovery of continuous field of ecological-climatic indices based on the meteorological 

stations data has been considered and the accuracy of such recovery assessed. Meteorological 

data from 13 stations were used to fit INLA model, and independent data from 58 stations were 

used to test the model. Traditional ecological-climatic indices were modelled (annual sum of 

effective temperatures, mean annual temperature, mean temperature of the coldest and the 

warmest month within a year). All indices show good compliance of the model predictions and 

data test (R2 in range 0.70-0.90).   

1.  Introduction 

Climate is one of the basic complex ecological factors determining conditions for species distribution, 

especially that of vegetation. The influence of the climate on vegetation is diverse and primarily 

related to such important conditions of occurrence as heat and humidity. Thus, ecological factor of 

heat can be estimated by the use of averaged daily temperatures and their derivatives, i.e. annual sum 

of effective temperatures, mean annual temperature, mean temperature of the coldest and the warmest 

month within a year. Although these indices are spatially distributed and they can be calculated only 

for meteorological stations, they can be interpolated for the rest of the area. Recently, Bayesian 

statistical approaches have been elaborated for spatial-temporal modeling based on determination of 

the stochastic field indices. This work is devoted to the application of INLA (Integrated Nested 

Laplace Approximations) method [1, 2] in spatio-temporal modeling of ecological-climatic indices.  

2.  Input Data  

The GSOD data obtained by National Climatic Data Center (NCDC) in Asheville, the USA, in the 

framework of data exchange program of World Weather Watch (WWW) in accordance with the 

WMO Resolution 40 (Cg-XII) offering free access for scientific and non-profit institutions have been 

used as input data. The access was performed via FTP server (ftp://ftp.ncdc.noaa.gov/pub/data/gsod) 

and involved average, minimal and maximal daily temperatures and information on wind and 

sediments. 

Three derivative ecological-climatic indices have been calculated from average daily temperature, 

i.e. mean annual temperature (mean.T), mean temperature of July (jul.T), mean temperature of January 

(jan.T), the number of days with negative temperatures (Sum.NegativeDays), sum of negative 

temperatures below -10 ºC (Sum.Negative10.T) and the Growing degree-day (sum of effective 

temperatures exceeding  10ºC, Sum.Positive10.T). 
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The area of Middle Volga region limited in the longitude from 43ºE to 58ºE and in the latitude 

from 52ºN to 58ºN was selected for the modelling. This area covers the most part of the Volga region. 

The area has a distinct latitude climate gradient (boreal ecocline zone). Modeling area is presented by 

a rectangle of 860x800 km as shown in figure 1 below. Figure 2 shows triangulation net used for the 

recovery of ecological-meteorological indices. 

 
Figure 1. Modeling area and weather observing stations positions. 

 

 
Figure 2. Triangulation net of the modeling area. Round symbols correspond to the 

stations with input data and triangles to the stations used for the model validation. 



3

1234567890

ESDT IOP Publishing

IOP Conf. Series: Earth and Environmental Science 107 (2018) 012106  doi :10.1088/1755-1315/107/1/012106

 

 

 

 

 

 

Modeling period covers 1980-2016 years reach with input available data. In GSOD database, 71 

stations are found with annual information and used as input data source. Other 58 stations with the 

information covering from 3 to 36 years were applied for modeling results assessment. 

3.  Methods 

The modeling was performed with the statistics system INLA [1] that employs the concept of random 

fields for the recovery of continuous spatial-temporal field of the distribution of the index to be 

modeled. 

All the parameters modeled indexed as Y were assessed using the same type of model: 

0 1 2( , ) ( ) ( , )mean yearY s year a a Year a H RF s RF s Year        (1) 

Here 
( , )Y s year

 is a modeled index in the spatial location s , in a year 
year

,  1a Year
 is a 

linear temporal trend (along the years counted from 1980), 2a H
is a linear height trend, 

( )meanRF s
 

is a value of mean annual random field of the index and 
( , )yearRF s Year

 is a value of random field 

estimating deviation from mean average value within a 
year

. 

4.  Results and Discussion 

The following results have been obtained for linear trends (table 1), Bayesian credible intervals were 

used to estimate significance. 

Table 1. Linear trends. 

Index Years Height 

Index SD Significance Index SD Significance 

mean.T 0.04 0.01      Yes -0.010 0.003 Yes 

jul.T 0.03 0.03      No -0.011 0.001 Yes 

jan.T -0.01 0.05      No -0.011 0.008 No 

Sum.NegativeDays -0.49 0.11      Yes 0.094 0.022 Yes 

Sum.Negative10.T 0.13 1.40      No -0.920 0.510 No 

Sum.Positive10.T 7.11 1.59      Yes -1.305 0.206 Yes 

 

The quality of the modeling of spatial-temporal distribution of the indexes was estimated by 

comparison of the predicted indices with those observed at 58 test stations. For this purpose, 

correlation coefficient between the observed and modeled indices was calculated for the test stations 

within the minimal rectangle bounding 13 stations with the input data (tagged “interpolation” in text), 

and that for all the stations (tagged “all” in text) providing the comparison of interpolation and 

extrapolation result. The results obtained are given below in table 2 (correlation). 

Table 2. Correlation between observed and modelled indexes. 

Index Correlation 

(Interpolation) 

Correlation 

(All) 

R
2
 

(Interpolation) 

mean.T 0.86 0.87 0.75 

jul.T 0.92 0.90 0.81 

jan.T 0.89 0.87 0.75 

Sum.NegativeDays 0.89 0.88 0.78 

Sum.Negative10.T 0.76 0.71 0.51 

Sum.Positive10.T 0.88 0.87 0.76 

 

Linear regression results of indices on the corresponding models are given in table 3 (bias, slope and 

standard deviation). 
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Table 3. Linear regression coefficients for models of observed and modelled indices. 

Index 
Interpolation All 

bias slope SD bias slope SD 

mean.T 0.91 0.81 0.68 1.54 0.69 0.72 

jul.T 1.56 0.93 0.82 3.00 0.86 0.95 

jan.T -0.20 0.95 1.64 -0.81 0.87 1.83 

Sum.NegativeDays 3.14 0.97 7.15 21.24 0.83 7.88 

Sum.Negative10.T -82.6 0.72 81.4 -123.8 0.54 91.7 

Sum.Positive10.T 155.6 0.85 103.1 235.2 0.78 115.0 

 

Figures 3-5 illustrate some results. 
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Figure 3. The comparison of model and real indices corresponding to test stations. Filled symbols 

correspond to interpolation data and open symbols to extrapolation results obtained for the stations 

outside the initial input data area. 

 

The model obtained makes it possible to estimate continuous distribution of the index along the 

area used for modeling. Thus, model distribution of effective temperatures for 1980 and 2010 is 

presented below in figure 3 (obtained with mean height value to provide more smooth contours). 

The consideration of the results shows that the applied INLA method is a reliable tool for recovery 

of continuous field of ecological-climatic indices even if a limited set of data from meteorological 

stations is available. The method allows operating incomplete temporal data. This makes it convenient 

for imputation of missed stations data. The spatial distribution of the ecological-climatic indices 

obtained can be used for territory zoning, especially in agriculture and geobotany. Besides, modeling 

made it possible to discover statistically significant temporal trend of mean temperature and of the 

sum of Growing degree-days on the area considered. The applied method (INLA) provides not only 

the indices of expectation estimate, but also the probability distribution in the form of p.d.f. at each 

location, as well as uncertainty estimate.  

 



5

1234567890

ESDT IOP Publishing

IOP Conf. Series: Earth and Environmental Science 107 (2018) 012106  doi :10.1088/1755-1315/107/1/012106

 

 

 

 

 

 

 500  550 

 600 

 650 

 700 
 750 

 800 

 850 

 
Figure 4. Model distribution of the Growing degree-day (Sum.Positive10.T) values in 1980. 
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Figure 5. Model distribution of the Growing degree-day (Sum.Positive10.T) values in 2010. 
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