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Abstract. As the size of integrated device becoming increasingly small, from the last century, 
semiconductor industry is facing the enormous challenge to break the Moore’s law. The 
development of calculation, communication and automatic control have emergent expectation of 
new materials at the aspect of semiconductor industrial technology and science. In spite of silicon 
device, searching the alternative material with outstanding electronic properties has always been 
a research point. As the discovery of graphene, the research of two-dimensional Dirac material 
starts to express new vitality. This essay studied the development calculation of 2D material’s 
mobility and introduce some detailed information of some approximation method of the first 
principle calculation. 

1. Introduction 
Since the graphene has been successfully synthesis, 2D material got a lot of attention. The reason is that 
is has great potential in the fundamental science and application research. For example, as a good electro 
material, they can be made excellent field effect transistor. 

2D Dirac material is a kind of material system established as the discovery of graphene [1]. The 
Dirac material has very excellent electronic properties, the most widely known material is graphene. 
The band structure of Dirac material contains Dirac corn, which means the dispersion relation is linear 
near the Dirac point. In the meanwhile, around the Fermi surface, the electrons show a behavior of 
massless Dirac Fermion, besides, with the effect of magnetic field, it shows half-integer and fraction 
hall effect [2], with high carrier mobility and other new electronic properties [3]. At present, 2D Dirac 
material mainly include graphene, silylene, germylene [4], borophene and specific graphdiyne [5]. 
Figure 1 shows Dirac material consists by different elements.  
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Figure 1. The 2D Dirac materials consist of different element 

The physical properties in the solid depend on the electron properties around the Fermi surface in 
the solid to a great extent. The solid band theory was developed gradually since the foundation of 
quantum theory at early of the last century. At 1928, Bloch pointed out that the nature of the electron 
behavior is the motion in the lattice historical potential field [6]. In order to calculate the energy level 
of the electron, Hartree proposed self-consistent calculation method. However, the exchange-correlation 
potential wasn’t take into consideration, therefore Fock made an amendment and it is called Hartree-
Fock method which can be used to calculate the band structure of electron [7]. In 1936, Fermi came up 
with the concept of pseudo potential which has been applied to calculation physics, however, it is not 
easy to build appropriate pseudo potential. This process requires lots of theoretical and practical prove 
[8]. In 1937, Slater came up with another method to calculate band structure of solid called Augmented-
Plane-Wave Method [9]. This method further developed to the methods we now use. After 1960, many 
theoretical calculation methods developed rapidly as the development of computer. The greatest process 
was the Density Functional Theory (DFT) proposed by Hobenberg, Kohn and Sham [10]. The 
innovation of DFT lies in it considers the electronic properties as the function of electron density. Now 
DFT has become a reliable method to calculate ground electronic properties and band structure. In 1980, 
DFT got great development. Including the application of the self-consistent method, the exploitation of 
many software based on DFT calculation. In 1986, Bednorz and Muller found the high temperature 
superconducting phenomenon [11]. It gives rise to many calculations related to phonons and promote 
the development of many more complicated calculation methods. 

2. Bloch theory 
In the foundation of mean field approximation, Bloch proved this theorem that the solutions of the 
Schrodinger equation for a periodic potential must be of a following form 

( ) ( )exp( )k ku i  r r k r ,                           (1) 

where 
( )ku r

 has the same period as the lattice 
( ) ( )k ku u r r T

. The Bloch theorem is that the 

eigenfunctions of the wave equation for a periodic potential are equal to the product of a function 
( )ku r

 

with the crystal lattice periodicity times a plane wave exp( )i k r [12]. Then I’ll give a restricted proof 

of this theorem which is valid when k
 is nondegenerate. We assume N lattice points on a ring of 
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length Na. The potential energy is ( ) ( )U x U x sa  , where s is an integer. Then we consider the ring’s 
symmetry, when the x is added Na, the eigenfunctions must be equal with the previous one. Then, on 

going once around the ring, ( ) ( ) ( )Nx Na x C x     , because ( )x must be single-valued. In 

this case, exp( 2 / );C i s N 0,1,2,..., 1s N  , so as long as 
( )ku x

has the periodicity a ，so that 

( ) ( )k ku x u x a 
，then we get Bloch result 

exp( 2 / )k ku i sx Na 
. 

3. Density Functional Theory 
Density functional theory is a proposed by Kohn and Hohenberg in the 1960s. It is a method to find the 
Schrodinger equation that reflects the quantum behaviour of molecules and atoms which finally reflects 
the properties of the materials. The Density Functional Theory include two fundamental mathematical 
theorems [13]. The first theorem is: The ground state energy for Schrodinger’s equation can be uniquely 
identified by the distribution of the electron density. The second theorem defines how to get this 
functional: The electron density which make the total energy of the functional minimum is the true 
electron density. 

3.1. Kohn-Sham Equation 
In the density functional theory, the energy functional corresponding to the terms of the single-electron 
wave functions can be written as  

     i known i XC iE E E              ,                            (2) 

where the results have two forms, one form is 
 known iE    , and the other form is, XCE . The 

“known” terms has four part: 

 
         2 2

* 2 3 3 3 3
known 2i i i ion

i

n r n rh e
E d r V r n r d r d rd r E

m r r
  


          

,    (3) 

The another term, 
 XC iE    , is the exchange-correlation functional, and this term include all the 

quantum mechanical effects which are not included in the first terms[13]. By putting the energy into 
Schrodinger equation we have the form 

         
2

2

2 H XC i i i

h
V r V r V r r r

m
 

 
     

 

    

,                     (4) 
Which is called the Kohn-Sham equations. On the left-hand side, there are three potentials, V, VH, 

and VXC. Where 

   2 3
'

'
'

H

n r
V r e d r

r r






 

is called Hatree potential. 

   
 

XC

XC

E r
V r

n r










 is called 

exchange-correlation potential which is the derivation of the exchange-correlation functional. 

3.2. Exchange-correlation Functional 

Exchange-correlation functional is a term that defined to include all the quantum mechanical effects that 
are not included in the “known” terms. In fact, the true form of this term is unknown yet. However, there 

are some approximation of exchange-correlation functional and simplify the problem.
 XCE n

，for an 
arbitrary n,  
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        22 ...XC XC XCE n n ndr n n ndr      .                     (5) 

However, if n(r) is sufficiently varying slowly, one can show that  

      XC XCE n n r n r dr  ,                              (6) 

where 
  XC n r

 is the exchange and correlation energy per electron of a uniform electron gas of 

density n. The 
 XCE n

 can be also obtained a scheme which includes exchange effects exactly. 

 
        XC X CE n E n n r n r dr   ,                          (7) 

where 
 XE n

 is the exchange energy of a Hartree-Fock system of density n(r) and 
  C n r

 is 
the correlation energy per particle of a homogeneous electron gas. 

3.3. The other approximation method of exchange-correlation functional 

3.3.1. LDA and LSDA method 

The approximation expression 
      LDA

XC XCE n n r n r dr  is called LDA (Local-density 
Approximation) method. This approximation consider the exchange-correlation field is related only to 
electron density distribution in the space. LDA is the earliest method and the foundation of Generalized 
Gradient Approximation (GGA) method. If the spin is taken into consideration, this method can be 
advice to Local Spin-density Approximation,  

   , ,LSDA
XC XCE n n n r n n dr      


,                          (8) 

This kind of approximation is so accurate for solids that it is used widely. In fact, the LSD method 
usually gives a remarkably accurate bond length but undervaluation of atomization energies. 

3.3.2. GGA method 
After the LSD method, the generalized gradient approximation(GGA) method had been proposed.  

    3, , , ,GGA GGA
XC XCE n n n r n n n n d r          


,                    (9) 

which introduces the density gradients 
n

and 
n

 as additional local ingredients of 
GGA
XC . The 

GGA method contains two main methods, the PW method and PBE method. 

3.3.2.1.  PW method 
The PW method is a kind of approximation of GGA approximation proposed by Perdew and Wang in 
1991. They argued that the gradient expansion for the hole in real space is an expansion in R (distance 

from the electron) as well as  [14]. This method has no semiempirical parameter like the former ones 
and is also a more accurate description. The PW GGA-Ⅱ exchange energy is 

1 1
, 2 2

2 2
PWGGA PWGGA PWGGA
X X XE n n E n E n              

,                  (10) 

where 
     3 ,0PWGGA

X x sE n d rn r F s  ,  , 0 3 / 4x s Fr k  
. We use atomic units 
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(
2 1e m   ). Here, 

 1/323 1.91916 /F sk n r 
 is the local Fermi wave vector and 

/ 2 Fs n k n 
 is a scaled density gradient. The function F(s) is  

 
 

   
 

21 100 2

1 4

1 0.19645 sinh 7.7956 0.2743 0.1508

1 0.19645 sinh 7.7956 0.004

ss s e s
F s

s s s

 



  


 
          (11) 

For small s, 

 2 41+0.1234F s O s 
                            (12) 

The PW GGA-Ⅱ correlation energy is 

   3, , , ,PWGGA
c c s sE n n d rn r H t r           ,                 (13) 

where 
t / 2 sn gk n 

 is another scaled density gradient, 
   2/3 2/3
1 1 / 2g         and

 1/2
4 /s Fk k 

 is the local screening wave vector. 

3.3.2.2.  PBE method 
The PBE method (Perdew-Burke-Ernzerhof method) is now the most commonly used approximation in 
DFT theory which is proposed by Perdew, Burke and Ernzerhof in 1996. This method begin with the 
GGA for correlation in the form  

   3, , , ,GGA unif
C C s sE n n d rn r H r t   

       ,                 (14) 

where rs is the local Seitz radius (
3 3 23 / 4 / 3s Fn r k   ),  = /n n n  

 is the relative spin 

polarization[15], and 
/ 2 st n k n 

 is a dimensionless density gradient. Here 

     2/3 2/3
= 1+ + 1 / 2       is a spin-scaling factor, and 04 /s Fk k a

 is the Thomas-

Fermi screening wave number (
2 2

0 /a me  ). The gradient contribution H is constructed from three 
conditions: 

(a) If H is sufficiently slowly varying ( 0t  ), H can be given by its second-order gradient 

expansion 
 2 3 2

0/H e a t
, where 0.066725  .  

(b) If H is rapidly varying ( t  ), 
unif
CH   . 

(c) Under uniform scaling to the high-density limit, 
 2 3 2

0/ lnH e a t
.  

Then the form of the exchange energy have another four restrictions: 
(d) We must have 

   3GGA unif
X X XE d rn n F s  ,                             (15) 

where 
23 / 4unif

X Fe k   .  
(e) The exchange energy follows the spin-scaling relationship 

 , 2 2 / 2X X XE n n E n E n               ,                      (16) 

(f) It should have (as 0s  ) 
  21XF s s 

, where 
 2= /3 0.21951   

. 
(g) The Lieb-Oxford bound 
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2 3 4/3, , 1.679X XCE n n E n n e d rn             ,                   (17) 
will be satisfied if the spin-polarized enhancement factor  

   2=1+ / 1 /XF s s    
,                          (18) 

where =0.804 . Then the exchange-correlation energy can be constructed as the following form  

   3, , ,GGA unif
XC X XC sE n n d rn n F r s       ,                    (19) 

3.4.  First principle calculation 
First principle calculation (or the ab initio calculation) is to find the geometric construction, electronic 
structure, thermodynamic properties, optical properties and so on by solving Schodinger equations with 
self-consistent based on the atomic components. The basic idea is to comprehend the multi-atom system 
as the multi-particle system consists of nuclears and electrons and dealing with the problems with non-
empirical to the utmost extent. 

The first principle calculation just need five basic physical constants. (m,e,h,c,k) and the electron 
structure of different elements. Then we can reasonably predict many physical properties. The difference 
between the cell size resulted from calculation and experiment is only several percentage points, other 
properties are almost the same with experimental results. These show the veracity of this theory.  

The first principle calculation have three basic hypothesis to simplify the problems: 
(1) Using Born-Oppenheimer adiabatic approximation to transform the multi-particle problem to 

multi-electron problem.  
(2) Using single-electron approximation to simplify the solution of Schodinger equation. 
(3) Using self-consistent calculation to find the ground state properties. 

4. Tight-binding Model 
In solid state physics, the tight-binding model is a method to use the superposition of the wave functions 
for isolated atoms as the approximation of the wave functions to calculate the electronic band structure. 
In some case, the electron can be considered to be tied around the atom, then the wave function can be 

constructed as the sum of atom orbital wave functions
 a r l 
 

. Because of the Bloch Theory, the wave 

function has the form 
   ik l

ak
l

r e r l  
 




  

. There exists a method called the LCAO method (linear 
combination of atomic orbitals method) used to help solve this problem. Tight-binding models are 
applied wildly in physics. The model is accurate in many cases, even when it fails, it can be combined 
with other methods to give better results [12]. 

5. Deformation Potential Theory 

The deformation potential theory bring in an additional Hamiltonian term 
 H 

, which is the result 
from the strain that exerted on the material and its effects on the band structure. This Hamiltonian is 

based on first order perturbation theory. It’s matrix elements have the form  
  

3

, 1
ij

ij
H D


 

 


 
, 

where D

 denotes the deformation potential operator which transforms under symmetry operations 

as second rank tensor and 
 describes the 

 
 strain tensor component. The subscripts 

 ij
 in 

D

 represent the matrix element of the operator D

. Because of the strain tensor is symmetric as 
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regards to α and β, and the deformation potential operator also have the symmetry that D D   
and therefore makes the number of independent deformation potential operators to be six. 

6. Conclusion 
In recent years, the carrier mobility of 2D system has been paid more and more attention. This essay 
introduces Bloch theory, the density functional theory and its application in first principle calculation. 
In addition, we have a discussion about some approximation of exchange correlation potential which is 
important in Kohn-Sham equation, like LDA, LSDA, GGA includes PW and PBE method. The 
advantage and disadvantage of each method is summarized as well. Finally, we discussed about the 
tight-binding model and deformation potential theory for the calculation of the carrier mobility of 2D 
materials. Hopefully, this paper could give an instruction to the two-dimensional Dirac materials 
researchers. 
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