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Abstract: Surface acoustic wave sensors with grapheme/PANI nanocomposite sensitive films 
for detecting nitric oxide (NO) were fabricated and experimentally studied. Morphological 
characterization and functionalization of the sensing material were explored using SEM and 
FTIR, respectively. The study of sensor response compared film sensitivity, response time, 
reversibility, and limit of detection for nanocomposite films, pure grapheme and pure PANI to 
the detection of NO. The response and recovery times were 40s and 20s when detecting 4ppm 
NO, respectively. The frequency response was discovered to be linear in the NO concentration 
range 1–50 ppm. The nanocomposite sensors had improved sensitivities compared to the 
polymer devices, and better response times. 

1. Introduction 
The selective and sensitive gas-sensing technology of surface acoustic wave sensor (SAW) is 
determined largely by the nature of the sensing film. Over the past few years, extensive research has 
been performed using nanocomposite sensitive films, because the combination of different compounds 
into one sensing layer has the potential to improve the sensitivity while retaining the advantages of its 
constituents and increasing its surface functionality.[1~5] The preparation of very thin and homogenous 
sensitive films is desirable for enabling high signal-to-noise ratio and short response time for sensor.[6] 
A drawback of the nanocomposite layers is that due to rather poor dispersion of the filler particles it is 
difficult to control structural features as inter-particle spacing and position on the surface; moreover the 
particles may tend to aggregate the composite material.[7] 

Graphene is a two-dimensional material with an improved capability of gas sensing, which is due to 
two main facts: (1) the two-dimensional nature, with only a surface and no volume, enhances the effect 
of surface dispersion, (2) a high conductivity and low electrical noise. The effect of various p- and 
n-doped gases on the gas sensing properties of pristine grapheme has been investigated in the past few 
years. The adsorption/desorption of gaseous molecules which act as electron donors or acceptors on the 
graphene surface is responsible for the gas sensing mechanism in graphene through modifications of the 
carrier density, and hence the electrical resistance of graphene.[8~10] 

Because of the lack of dangling bonds on the pristine graphene surface, gaseous molecules cannot be 
readily absorbed. One of the methods to improve the gas sensing properties of graphene is to composite 
it by polymers.[9] Polymer-based nanocomposites, produced by introducing nanoparticles, nanotubes, 
or nanowires into polymers, have enhanced absorption properties, mainly due to the increased surface 
area of the nanoscale materials. [11~13] As a versatile building block for the construction of adsorbents, 
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polyaniline (PANI) possesses high amine density and accessible primary amine sites on chain ends [14]. 
Therefore, PANI can easily interact with the oxygenated groups of graphene sheet, which is profit for 
the development of gas sensitive thin films. 

Our interest was to study and compare the nanocomposite sensing films based on graphene 
nanosheets and PANI nanoparticles. In this paper, we report on the development of SAWS for detecting 
nitric oxide (NO). Graphene/PANI composite were used as the sensing film. Their sensitivity, 
responsivity, and reversibility for different gas concentrations were studied, and a comparison between 
these sensors and polymer sensors demonstrated a significant improvement in sensitivity.  

2. Experimental   

2.1. Synthesis of Graphene/PANI nanocomposite 
The graphene/PANI doped with HCl synthesized by an in situ chemical oxidative polymerization, 
conducting in aqueous solution with Ammonium peroxydisulfate (APS; (NH4)2S2O8) as the oxidant. 
In a typical operation, 5mg graphene was sonicated for one hour in 20mL of ethylene glycol in the 
presence of 2mmol Aniline (Ani). Then 0.5mmol of APS in 10mL of 1.0M HCl was rapidly added to the 
mixture. The solution was cooled in an ice-water bath (0–5◦C) and magnetically stirred for 12h to 
continue polymerization. Finally, the obtained dark green precipitate was collected by filtration and 
respectively washed with deionized (DI) water, ethanol and hexane for three times. The resulting 
product was then dried in a vacuum oven at 25 ◦C for 24 h. As comparison, the PANI was prepared 
under the same process as those of graphene/PANI without graphene.  

2.2. Fabrication of high frequency SAW devices   
The sensors were “delay line” type, with a center frequency of 69.4 MHz. An interdigitated transducer 
(IDT) with 50 straight finger pairs, a 2500μm aperture width and a periodicity of 40 µm was patterned 
on a piezoelectric substrate. The 150-nm-thick gold IDTs were deposited on 10-nm-thick chromium 
using standard photolithographic techniques. The active area was 8 mm2 with a parallelogram 
geometrical configuration of the quartz substrate in order to reduce acoustic wave reflection at the 
substrate edges.  

Before the film deposition, IDTs were rinsed with DI water and ethanol, and dried in vacuum oven at 
room temperature for 24 h. The graphene/PANI were added in 10 mL solutions (1 mg mL-1) with 3 mL 
ethanol and 7 mL DI water. The resulting solutions were sonicated for 15 min before used as uniform 
coating solution, and then applied on the IDTs by drop-coating method. After natural evaporation of the 
solvent in a drying box at room temperature for 2 h, the NO sensing thin films coated IDTs were 
obtained. 

The sensing properties of the fabricated SAW sensors were measured within an enclosure containing 
various NO gas concentrations. A computerized multi-channel gas calibration system was used for 
generating NO gas in a synthetic air balance. The NO and dry air were transported using mass flow 
controllers with a precision mass flow meter to change the ratio of NO gas to dry air. A temperature 
controller maintained a constant temperature of 25◦C. The response to the NO gas was monitored as 
change in frequency of the SAW sensor using a frequency counter .  

2.3. Characterization and testing instrumentation  
Fourier transform infrared (FTIR) spectra (KBr dispersed pellets) in the range of 400–2500 cm-1 were 
recorded on a fully computerized Nicolet 5700 spectrometer. The morphologies of the samples were 
characterized by field emission scanning electron microscopy (FESEM, CARL ZEISS Supra 55).  

3. Results and discussion 
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Figure 1. FESEM images of the surface 
morphology of sensing films: (a) and (b) 
Graphene/PANI; (c) Graphene; (d) PANI 

Figure 2. FTIR spectra of (a) 
graphene/PANI and (b) pure PANI. 

 
The surface morphology of graphene/PANI, graphene and PANI sensitive films was analyzed using 
FESEM. The graphene/PANI sensitive layer (Fig. 1(a)) had a uniform and porous structure, which seem 
to benefit for the short response time and good reversibility of the sensor. This is due to the fact that gas 
diffusion and absorption occurs more easily in porous structures, and the reaction between gas 
molecules and the thin film therefore occurs easily. Morphology of polyaniline is known to vary 
depending on the synthesis conditions.[15] In the present study, the mechanism of the formation of 
PANI particles on the graphene that aniline monomer is firstly adsorbed onto the surfaces of the 
graphene because of electrostatic attractions. Therefore, the graphene act as a role of support stabilizer 
to form graphene/PANI nanocomposite by chemical polymerization. Fig. 1c shows the large flake-like 
morphology of graphene with slightly folded edges and flat surfaces. Fig. 1d shows the PANI 
nanoparticles with spherical morphology prepared by the intrinsic polymerization condition.  

FTIR spectroscopy is important tool to study the chemical nature of nanocomposites. Fig. 2 displays 
the FTIR spectra of graphene/PANI. The main characteristic peaks of pure PANI (Fig. 2b) are assigned 
as follows: the bands at 1550 and 1490 cm-1 are attributed to ring stretching mode of vibration for the 
quinonoid and benzenoid units of PANI; the bands at 1310 and 1245 cm-1 are attributed to C-N 
stretching mode for benzenoid unit; the aromatic C-H in-plane band at 1160 cm-1; the out-of-plane 
deformation vibration of C-H bond in 1,2,4-disubstituted benzene at 960 and 900 cm-1; the out-of-plane 
deformation vibration of aromatic C-H bond at 800 cm-1; the vibration of C-Cl group at about 1040 cm-1. 
For graphene/PANI nanocomposite (Fig. 2a), the FTIR spectrum are almost identical to that of pure 
PANI, but all bands shift slightly. Moreover, the bands at 1040, 960 and 800 cm-1 have disappeared. 
Those results indicate some interaction between PANI and graphene. 
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Figure 3. Dynamic response of nanocomposite 

SAW sensors towards NO gas at room temperature
Figure 4. Dynamic responses of SAW 

sensors using pure PANI, pure graphene 
and graphene/PANI exposed to 4 ppm NO

 
The dynamic response of the sensors towards NO gas at room temperatures was shown in Fig 3. NO 

gas, at different concentrations in a balance of synthetic air, was introducing to the chamber and exposed 
to the sensors. The SAW sensor exhibited a negative frequency shift during exposure to the analyte gas. 
The frequency shift was proportional to the concentration for the sensor and no saturation was observed 
up to 15.0 ppm. After purging out the NO gas through the introduction of dry synthetic air, the 
operational frequency of the SAW sensor increases and return back to the baseline. The NO sensing 
mechanism of the graphene/PANI nanocomposite is not fully understood. Here we think the reasons that 
the frequency shift of graphene/PANI thin films sensor increases with the NO concentration mainly is: 
When the adsorption of NO gas on the sensitive layer, some quinoid bands of PANI were converted into 
benzenoid bands. This indicates that the layer was reduced during the NO oxidation process. When the 
sensor was purged by dry air, the sensitive layer was reoxidized. Consequently, the adsorbed NO 
desorbed from the surface and the sensitive layer recovered its original chemical structure. Therefore, 
the sensing signal could be recovered to the baseline. 

Fig. 4 depicts response curves of the sensors coated with different sensing films (pure PANI, pure 
graphene and graphene/PANI) as a function of time. It could be seen that the graphene/PANI layered 
film sensors show superior performances than pure grapheme and PANI sensors. The real response time 
was calculated by subtraction of 3–4 s from the measured response time. It is remarkable that 
graphene/PANI film coated sensors exhibit faster response rates among all sensors. The response of 
about 40 s was found for the graphene/PANI sensors (to reach 90% of maximum signal). For the pure 
PANI and pure graphene sensors, the response time was 85 s and 105 s, respectively.  

  
Figure 5. Comparison of frequency shifts 

at different gas concentrations. 
 Figure 6. Typical response and recovery 

curve of graphene/PANI sensors exposed 
to 4 ppm NO 
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The sensitivity, defined as the frequency shift in Hz per unit analyte concentration in ppm, was 
determined from the slope of the data as illustrated in Fig. 5. All of them exhibit almost linearity of 
frequency shift for NO concentrations ranging from 1 to 50 ppm. The inset depicts the situation at low 
NO concentration. The results show that the response value and response rate to graphene/PANI sensor 
were much higher than that of PANI and grapheme sensor. 

Repeatability, selectivity and long-term stability are all key factors for SAW sensors; especially the 
minimization of hysteresis behavior is an important condition for practical application of sensors. To 
investigate the sensor’s repeatability, the graphene/PANI sensor was tested at a fixed concentration 
repeatedly for three cycles, as shown in Fig. 6. It can be seen that the sensor exhibits reproducible 
adsorption and desorption kinetic behaviors with very little response fluctuation under the two humidity 
levels, indicating the good repeatability and baseline stability.  

4. Conclusion 
In summary, we have reported the synthesis of the graphene/PANI nanocomposite by chemical 
oxidative polymerization of aniline in the presence of graphene dispersion solution. A SAW gas sensor 
is fabricated by graphene/PANI nanocomposite using drop-coating method, and provided a comparison 
of graphene and PANI to detect NO gas. The result reveals that the nanocomposite films sensor exhibits 
much higher sensitivity and faster response time than that of grapheme or PANI, and shows approximate 
linearity over a wide range of concentrations from 0 to 50 ppm. Moreover, the graphene/PANI thin films 
sensor has good reproducibility for NO gas. The PANI nanoparticals are homogeneously dispersed on 
graphene, which may increase the surface-to-volume ratios and therefore increases the sensitivity of 
graphene/PANI thin films. 
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