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Abstract. The effects of the earthquakes on buildings and the concept of seismic base isolation are 
investigated by using the model of the vibrating bar embedded at one end. The normal modes and 
the eigenfrequencies of the bar are highlighted and the amplification of the response due to the 
excitation of the normal modes (eigenmodes) is computed. The effect is much enhanced at resonance, 
for oscillating shocks which contain eigenfrequencies of the bar. Also, the response of two linearly 
joined bars with one end embedded is calculated. It is shown that for very different elastic properties 
the eigenfrequencies are due mainly to the "softer" bar. The effect of the base isolation in seismic 
structural engineering is assessed by formulating the model of coupled harmonic oscillators, as a 
simplified model   for the structure building-foundation viewed as two coupled vibrating bars. The 
coupling decreases the lower eigenfrequencies of the structure and increases the higher ones. Similar 
amplification factors are derived for coupled oscillators at resonance with an oscillating shock. 

1.  Introduction 
The concept of seismic base isolation aims at formulating solutions for protecting buildings 
against earthquakes, by designing special couplings between buildings and their foundations. As 
a key element in earthquake engineering it aims at designing means of achieving to some extent a 
building-foundation decoupling, such that the response of the building to vibrations be not (too) 
damaging. Usually, the dynamics of the structure building-foundation is approached by means of 
the model of two coupled oscillators. It is examines here the formulation of this model starting 
with coupled elastic bars, [1-7]. To this end, it is useful to assess first the response to the ground 
excitation of a vibrating bar with one end embedded in the ground. At resonance, the response of 
the bar exhibits amplification factors which may attain large values. These amplification factors 
arise as a consequence of the excitation of the normal modes in the bar. Two coupled bars are also 
studied, excited at their lower end; for bars with very different elastic properties it is shown that 
the eigenfrequencies of this system are given mainly by the "softer" bar. Such an information may 
throw light upon the elasticity of composite structures, like, for instance, those including voids. 
Making use of the information gained from the study of the vibrating bars, is formulated the model 
of coupled harmonic oscillators and investigate its response to an oscillating shock. It is shown 
that the lower frequency of the system is lowered by the coupling, while the higher frequency is 
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raised. At resonance the coupled oscillators exhibit amplification factors, similar with the 
vibrating bar. 

2.  Embedded bar 
The most convenient model for investigating the response of a building to ground vibrations 
is the bar embedded at one end. Let us assume that a vertical elastic bar with uniform cross-
section is fixed in the ground at one end, having a length l above the ground surface; the bar 
end above the ground is free. Under the action of the seismic waves the buried end of the bar 
is set in motion. It is assumed the cross-sectional dimensions of the bar being much smaller 
than the bar length, so it can be considered only to the z-dependence of the displacement, where 
z is the vertical coordinate (along the bar). At the same time, it is considered the length of the 
bar and the excitation sufficiently small, such that the bar does not enter the regime of flexural 

elasticity (bending).  The strain tensor reduces to ݑ௫௭ ൌ ௭௫ݑ ൌ
ଵ

ଶ

డ௨ೣ
డ௭

௬௭ݑ  ,  ൌ ௭௬ݑ ൌ
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; the stress tensor is ߪ௫௫ ൌ ௬௬ߪ ൌ ߤ
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, where λ and µ are the Lame coefficients. It follows an elastic force density 
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. The equations of the elastic 

motion are [8] 

ሷݑߩ ௫ െ ߤ
డమ௨ೣ
డ௭మ

ൌ 0 ,  	

ሷݑߩ                                                                     ௬ െ ߤ
డమ௨೤
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ൌ 0 ,                                                                (1)	

ሷݑߩ ௭ െ ሺߣ ൅ ሻߤ2
డమ௨ೣ
డ௭మ

ൌ 0  

where ρ is the density of the bar. It may be limited to only one equation of motion, which writes in 
the generic form 

ሷݑ                                                               െ ܿଶ
డమ௨

డ௭మ
ൌ 0                                                              (2) 

where  u  and  c  stand  for  ux,y,z   and,  respectively, ܿ ௟ ൌ ඥሺߣ ൅ ܿ  ,ߩ/ሻߤ2 ௧ඥߩ/ߤ ; cl,t are the velocities  
of the longitudinal and, respectively,  transverse  waves  in the bar. 

3. Shock-type excitation  
The equation (2) is solved for a free upper end of the bar, while the lower end has the prescribed 
motion u0(t) of the ground; therefore, are imposed the boundary conditions 

                                                         
డ௨

డ௭
│௭ୀ௟ ൌ 0	, ௭ୀ଴│ݑ ൌ  ;                                                  (3)	ሻݐ଴ሺݑ

the motion is limited to t > 0 and 0 < z < l. Using time Fourier transform, equation (2) and the 
boundary conditions (3) read  

ᇱᇱݑ	                                      ൅ ݑଶߢ ൌ 0	, ௟ݑ
ᇱ ൌ 0	, ଴ݑ ൌ  ଴ሺ߱ሻ                                      (4)ݑ

where κ2  = ω2/c2  and the prime denotes the derivation with respect to z. The solution for the 
limited interval 0 < z < l can also be obtained by extending the equation to the whole space 
and limiting ourselves to the restriction of the solution to the interval 0 < z < l; as it is well 
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known, this is achieved by multiplying the equation by θ(z)θ(l-z) and absorbing the step 
functions θ in the derivatives (the method of generalized functions). Unfortunately, it should be 
use in this case the Green function which implies wave propagation in both directions, in order to 
satisfy the boundary conditions at infinity; this complicates the technical procedure (in contrast 
with the half-line, where one-direction Green function is  needed). The natural "initial" condition 
which requires the vanishing of the solution for past times (t < 0) is treated most conveniently by 
integrating over frequency ω in the lower half-plane (the causality condition). The solution of the 
equation (4) has the form  

ݑ                                                  ൌ ݖߢݏ݋ܿܣ ൅  (5)                                                               ݖߢ݊݅ݏܤ

where the constants A and B are determined by the boundary conditions; it is obtained 

ܣ                                                   ൌ ܤ			,	଴ݑ ൌ  (6)                                                              ݈ߢ݊ܽݐ଴ݑ

and 

,ݖሺݑ                                           ߱ሻ ൌ ݖߢݏ݋଴ሺ߱ሻሺܿݑ ൅ ݈ߢ݊ܽݐ ∙  ሻ                                                (7)ݖߢ݊݅ݏ

The reverse Fourier transform gives 
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where is taken the real part. It can be seen that half of the displacement u0(t) applied to the 
grounded end propagates along the bar with velocity c, while the other half propagates in the 
opposite direction (it "comes from the future"). It is considered seismic excitations which have a 
general aspect of shocks, i.e. they are concentrated in at the initial moment of time.  This is valid 
for both the primary P and S waves, as well  as for the main shock produced by the so-called 
surface waves. Consequently, it is assumed first a shock-like ground motion u0(t) = u0T δ(t), u0(ω) = 
u0T , where T is a measure for the duration of the shock. The second integral in equation (9) implies 
the contribution of the poles arising from the zeroes 0 f the denominator of tan κl:  cos κl = cos ωnl/c 
= 0, ωn  = (2n + 1)πc/2l, where n is any integer. Results 

,ݖሺݑ             ሻݐ ൌ
ଵ

ଶ
ݐሺߜ଴ܶሾݑ െ ሻܿ/ݖ ൅ ݐሺߜ ൅ ሻሿܿ/ݖ ൅ ଴ݑ

௖்

௟
∑ ௡௡߱݊݅ݏ ݐ ∙  (10)         ܿ/ݖ௡߱݊݅ݏ

It can be see that half of the δ-pulse applied at the fixed end at the initial moment propagates 
along the bar up to z = l, while the other half, "coming from the future", brings no contribution 
to the motion of the bar (0 < z < l), except for z = 0; in addition, vibrations given by the normal 
modes with the eigenfrequencies ωn are excited in the bar. The summation over n in equation 
(10) gives a pulse going forth and back along the bar. Any approximation to the series in equation 
(10) (e.g. a truncated series) gives normal modes extending over the length of the bar. 

The amplitude of the pulse is of the order u0, while the amplitude of the normal modes is of 
the order u0cT/l; is introduced the parameter 

                                                                  ݃ ൌ
௖்

௟
                                                                                (11) 
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and denote by un(t,z) the contribution to the displacement of the n-th normal mode, i.e. 

௡ݑ                                     ൌ ݐ௡߱݊݅ݏ଴ݑ݃ ∙  (12)                                                                         ܿ/ݖ௡߱݊݅ݏ

the corresponding velocity and acceleration are given  by 

ሶݑ                 ௡ ൌ ݐ௡߱ݏ݋଴߱௡ܿݑ݃ ∙ ܿ/ݖ௡߱݊݅ݏ ൌ ݃
௨బ
்
ሺ߱௡ܶሻܿ߱ݏ݋௡ݐ ∙  (13)                                ܿ/ݖ௡߱݊݅ݏ

and, respectively, 

ሷ௡ݑ                 ൌ െ݃ݑ଴߱௡ଶ߱݊݅ݏ௡ݐ ∙
௦௜௡ఠ೙௭

௖
ൌ െ݃

௨బ
்మ
ሺ߱௡ܶሻଶ߱݊݅ݏ௡ݐ ∙  (14)                                ܿ/ݖ௡߱݊݅ݏ

A δ-shock of the form u(t) = u0T δ(t) includes an overlapping of oscillations with equal weights 
for all frequencies. It can be seen from the above equations that the response of the bar is affected 
by the factor g and powers of ωnT ; beside the ground displacement u0, the quantities u0/T and u0/T

2  

may be viewed as ground velocity and, respectively, acceleration. Typical values of the velocity of 
the elastic waves in the bar are c ≃ 3 × 10 m/s; for a short duration T = 0.1s is obtained g = 10 for a 
length l = 30m. It can be observed that the displacement, velocity and acceleration amplitudes in the 
bar could be enhanced in comparison with their ground counterparts. This is why it can de called 
the parameter g the amplification factor.  

However, a pulse with a finite duration T excites mainly frequencies ωn up to ≃ π/T ; in the above 
formulae, a weight factor f(ωn) should be inserted, which decreases appreciably for frequencies ωn  
> π/T ; therefore, the amplification parameter is subject to the condition 

                                               ߱௡ܶ ൌ
ሺଶ௡ାଵሻగ

ଶ
݃ ൑  (15)                                                                   ߨ

which implies values for g of the order as high as unity, corresponding to the fundamental frequency 
ω0= πc/2l (n = 0).  In addition, it is well known that the seismic spectrum includes a range of 
frequencies extending up to ≃ 10s, which is far below a fundamental frequency of the order c/l ≃ 
100s  for c ≃ 3 × 10 m/s and l= 30m. Therefore, it is unlikely that a short pulse can excite normal 
modes which might lead to appreciable amplification factors in reasonable conditions. However, 
the situation is different if the pulse includes resonance frequencies.  

As a technical point, it should be noted that if the pulse is applied at some point on the bar, 
different from the bar ends, then it can be considered in fact two bars; the solution has four 
constants of the type A and B in equation (5) and the boundary conditions are the continuity of 
the displacement at the point of application of the excitation, the equality of the displacement 
with the excitation at that point and the conditions at the two ends; the resulting four equations 
determine the four constants of the solution. 

4.  Coupled oscillators 
Here are examined the necessary conditions for two coupled vibrating bodies be approximated by 
two coupled dimensionless (point) harmonic oscillators. [9] The motion of the n-th normal 
mode is described by the equation 

ሷݑߩ                                    ௡ ൅ ௡ݑ௡ଶߢߤ ൌ ሷݑߩ ௡ ൅ ௡ݑ௡ଶ߱ߩ ൌ 0                                                   (16) 



5

1234567890

World Multidisciplinary Earth Sciences Symposium (WMESS 2017) IOP Publishing

IOP Conf. Series: Earth and Environmental Science 95 (2017) 032017    doi   :10.1088/1755-1315/95/3/032017

and it can be seen that the z-dependence becomes irrelevant, and it could be view un as a global 
representation of the displacement of a point oscillator; this equation is written for the shear 
modes, but it has the same form, with µ replaced by λ + 2µ, for the longitudinal modes. This is the 
equation of the harmonic oscillators with a set of eigenfrequencies. For frequencies near a certain 
eigenfrequency ω1 (e.g., the fundamental frequency) there is the possibility of limitation to only one 
harmonic-oscillator equation, written as 

ሷଵݑߩ                                                  ൅ ߱ଵ
ଶݑଵ ൌ 0                                                                          (17) 

where is introduced the label 1 because a similar equation is written for another oscillator, denoted 
by 2, coupled to the  former.  

At the joining point z =0 bar 1 acts with a force density (per unit area) ߤଵݑଵ
ᇱ │௭ୀ଴	 on bar 2, while 

bar 2 acts with a force ߤଶݑଶ
ᇱ │௭ୀ଴ on the former (for shear displacement). The forces which act upon 

the bars viewed as oscillators are ߤଵ,ଶݑଵ,ଶ
ᇱ │௭ୀ଴	ܵ, where S is the area of the joining surface.  The 

derivatives of the displacement  can be represented   as ݑଵ,ଶ
ᇱ │௭ୀ଴ ≅   ଵ,ଶ/݀ଵ,ଶ,  where  d1,2   are someݑ

fictitious  distances,  introduced  for controlling the dimensionality of the equations.  It follows that 
the interaction forces are of the order ߤଵ,ଶݑଵ,ଶܵ/݀ଵ,ଶ.  In order to conserve energy one must have 
ଵܵ/݀ଵ;ൌߤ ଵܵ݀ଶߤ ,ଶܵ/݀ଶ; indeedߤ ൌ  ଶܵ݀ଵis the interaction energy transferred between theߤ
two oscillators. This is a necessary condition for the two bars be approximated by oscillators. 
Therefore, is introduced the elastic interaction constant 

ܭ	                                              ൌ ଵܵ/݀ଵߤ ൌ  ଶܵ/݀ଶ                                                   (18)ߤ

and write the equations of motion for the two oscillators 

                                            	݉ଵ,ଶݑሷଵ,ଶ ൅ ݉ଵ,ଶ߱ଵ
ଶݑଵ,ଶ ൅ ଶ,ଵݑܭ ൌ 0                                                   (19) 

with the masses m1,2 for each oscillator. It is worth comparing the interaction constants K with 
the oscillator constants 

                                     ݉ଵ,ଶ߱ଵ,ଶ
ଶ ≅ ݉ଵ,ଶ

௖భ,మ
మ

௟భ,మ
మ ଵ,ଶ௡ߙ

ଶ ൌ ൫ߤଵ,ଶܵ/݈ଵ,ଶ൯ߙଵ,ଶ௡
ଶ                                             (20) 

where α1,2n are numerical factor from the eigenfrequencies ߱ଵ,ଶ௡ ൌ ൫ܿଵ,ଶ/݈ଵ,ଶ൯ߙଵ,ଶ௡ ; these factors increase 
with increasing n. For lower frequencies and l1,2 of the same order of magnitude as d1,2, all the oscillation 
constants  ݉ଵ,ଶ߱ଵ,ଶ

ଶ  and K are of the same order of magnitude. This implies a severe restriction upon 
the coupled-oscillators approximation, since, rigorously speaking, these energies are not equal; it 
originates in the circumstance that the model of coupled oscillators requires the eigenfrequencies 
and the coupling constant derive from different forces, while for elastic bars these quantities have 
the same common origin - the elastic force. However, if is gave up the assumption of a sharp 
joining surface and consider that the two bars are welded, then there exists a smooth joining and 
the difference between the two interaction forces and the transferred interaction energies is taken 
over by the welding; during motion there is a mechanical work dissipated in the welding.  In these 
conditions it can be assumed ݉ଵ߱ଵ

ଶ ് ݉ଶ߱ଶ
ଶ ്  .ܭ

The potential energy associated with these two oscillators reads 
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                    ܸ ൌ
ଵ

ଶ
݉ଵ߱ଵ

ଶݑଵ
ଶ ൅

ଵ

ଶ
݉ଶ߱ଶ

ଶݑଶ
ଶ ൅  ଶ                                              (21)ݑଵݑܭ

It must have a minimum for u1,2=0; this condition implies 

ܭ                                   ൏ ݉ଵ݉ଶ߱ଵ
ଶ߱ଶ

ଶ                                                                 (22) 

With the notations introduced above this inequality reads 

                                 	݈ଵ݈ଶ ൏ ݀ଵ݀ଶߙଵ௡
ଶ ଶ௡ߙ

ଶ                                                               (23) 

which can be satisfied, especially for higher eigenfrequencies.   

It is convenient to introduce a parameter 0<γ<1 through  

ଶܭ                                         ൌ ݉ଵ݉ଶ߱ଵ
ଶ߱ଶ

ଶሺ1 െ  ሻ                                                                (24)ߛ

for γ=1 there is no coupling, for γ=0 the coupling is maximal. The parameter γ is a dimensionless coupling 
constant; the values of γ close to zero are of interest (maximal coupling). Also, it is introduced the notations 
݇ଵ,ଶ ൌ  ଵ,ଶ, such that the system of equations (19) can be written as݉/ܭ

ሷଵ,ଶݑ                                             ൅ ߱ଵ
ଶݑଵ,ଶ ൅ ݇ଵ,ଶݑଶ,ଵ ൌ 0                                                        (25)     

The eigenfrequencies of this system of equations are the roots Ω1,2 of the equation 

߂                                  ൌ ଶߗ െ ሺ߱ଵ
ଶ ൅ ߱ଶ

ଶሻߗଶ ൅ ߱ଵ
ଶ߱ଶ

ଶߛ ൌ 0 ;                                                 (26)        

and are obtained 

ଵߗ                        
ଶ ൌ

ଵ

ଶ
ቂ߱ଵ

ଶ ൅ ߱ଶ
ଶ ൅ ඥሺ߱ଵ

ଶ ൅ ߱ଶ
ଶሻଶ െ 4 ଵ߱

ଶ߱ଶ
ଶߛቃ ≅ ߱ଵ

ଶ ൅ ߱ଶ
ଶ                             (27) 

and 

ଶߗ                        
ଶ ൌ

ଵ

ଶ
ቂ߱ଵ

ଶ ൅ ߱ଶ
ଶ െ ඥሺ ଵ߱

ଶ ൅ ߱ଶ
ଶሻଶ െ 4 ଵ߱

ଶ߱ଶ
ଶߛቃ ≅

ఠభ
మఠమ

మ

ఠభ
మାఠమ

మ  (28)                              ߛ

One can see that ߗଵ
ଶ increases from ߱ଵ

ଶ to ߱ଵ
ଶ ൅ ߱ଶ

ଶ, while ߗଶ
ଶdecreases from ߱ଶ

ଶ  (߱ଶ
ଶ ൏ ߱ଵ

ଶ) down to 
zero for ܭଶ/݉ଵ݉ଶ going from zero to its maximum value ߱ଵ

ଶ߱ଶ
ଶ (for γ going from 1 to 0); the coupling 

lowers the low eigenfrequency and raises the high eigenfrequency.  
For a realistic use of the coupled-oscillator model are considered the two oscillators as corresponding to 

a building (oscillator 2) and its foundation (oscillator 1). For a stiff foundation, such that ߱ଵ ൐ ߱ଶ the 
eigenfrequencies of the building are reduced to an appreciable extent (down to zero), while the 
eigenfrequencies of the foundation are increased by the coupling. For a soft foundation (߱ଵ ൏ ߱ଶ) the 
situation is reversed, the eigenfrequencies of the building are raised by the coupling and those of the 
foundation are reduced.  

The solutions of the homogenous system of equations (25) are the real part of  

ଵ,ଶݑ	                                           
଴ ൌ ଵ,ଶ݁௜ఆభ௧ܣ ൅  ଵ,ଶ݁௜ఆమ௧                                                        (29)ܤ

with complex constants A1,2 , B1,2. These constants satisfy the system of equations (25) for Ω=Ω1,2, 
respectively:  

                         ሺ߱ଵ
ଶ െ ଵߗ

ଶሻܣଵ ൅ ݇ଵܣଶ ൌ 0, ሺ߱ଶ
ଶ െ ଶߗ

ଶሻܤଵ ൅ ݇ଶܤଶ ൌ 0                                  (30) 

therefore 
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ଶܣ                       ൌ
ఆభ
మିఠభ

మ

௞భ
ଵܣ ≅

ఠమ
మ

௞భ
,	ଵܣ ଵܤ	 ൌ

ఆమ
మିఠమ

మ

௞మ
ଶܤ ≅ െ

ఠమ
మ

௞మ
 ଶ ;                                        (31)ܤ

the solution is the real part of  

ଵݑ                    
଴ ≅ ଵ݁௜ఆభ௧ܣ െ

ఠమ
మ

௞మ
,	ଶ݁௜ఆమ௧ܤ ଶݑ

଴ ≅
ఠమ
మ

௞భ
ଵ݁௜ఆభ௧ܣ ൅  ଶ݁௜ఆమ௧                                      (32)ܤ

Let us assume now that the foundation (oscillator 1) is subjected to a force ሺݐሻ ଴݂݁ିఈ௧ܿ߱ݏ݋଴ݐ, ߙ ≪ ߱଴, 
arising from the ground motion; the equations of motion of the two oscillators 

ሷݑ	              ଵ ൅ ߱ଵ
ଶݑଵ ൅ ݇ଵݑଶ ൌ ,	ݐ଴߱ݏ݋ሻ݁ିఈ௧ܿݐሺߠ݂ ሷݑ ଶ ൅ ߱ଶ

ଶݑଶ ൅ ݇ଶݑଵ ൌ 0                               (33) 

where f=f0/m1 ; a particular solution is the real part of  

ଵ,ଶݑ                                                    ൌ ܽଵ,ଶ݁௜ఠబ௧ିఈ௧                                                                    (34) 

The constants a1,2 are given by 

                                             	ܽଵ ൌ ݂
ఠమ
మିఠ෥బ

మ

௱෩
	 , ܽଶ ൌ െ݂

௞మ
௱෩

 ,                                                            (35) 

where ߂ሚ ൌ ሺ ෥߱଴
ଶ െ ଵߗ

ଶሻሺ ෥߱଴
ଶ െ ଶߗ

ଶሻ and ෥߱଴ ൌ ߱଴ ൅ ଵ,ଶݑ adding the solution ;ߙ݅
଴  of the homogenous system 

of equations (equations (36))  the full solution is written 

ଵݑ    ൌ ଵ݁௜ఆభ௧ܣ െ
ఠమ
మ

௞మ
ଶ݁௜ఆమ௧ܤ ൅ ݂

ఠమ
మିఠ෥బ

మ

௱෩
݁௜ఠ෥బ௧	, 

                                                                                                                                                         (36) 

ଶݑ ൌ
߱ଶ
ଶ

݇ଵ
ଵ݁௜ఆభ௧ܣ ൅ ଶ݁௜ఆమ௧ܤ െ ݂

݇ଶ
ሚ߂
݁௜ఠ෥బ௧ 

The (complex) constants A1, B2 are determined from the initial conditions ݑଵ,ଶሺݐ ൌ 0ሻ ൌ 0	,
ݐሶଵ,ଶሺݑ ൌ 0ሻ ൌ 0.  

By focusing on the resonance of the building, where ߱଴ ൌ ߙሺ		ଶߗ ≪ ሚ߂  ଶሻ  andߗ ≅ ଵߗߙ
ଶሺߙ െ  ଶሻ, theߗ2݅

initial conditions give A1≅ 0 and  

ଶܤ	                                                    ≅
௙௞మ

ସఆభ
మఆమ

మ ቀ1 ൅ ݅
ఆమ
ఈ
ቁ ;                                                                   (37) 

the displacements are obtained 

ଵݑ ൌ െ
௙ఠమ

మ

ସఆభ
మఆమ

మ ቀܿߗݏ݋ଶݐ െ
ఆమ
ఈ
ቁݐଶߗ݊݅ݏ ሺ1 െ ݁ିఈ௧ሻ ൅ ܱሺߙሻ , 

                                                                                                                                                              (38) 

ଶݑ ൌ
݂݇ଶ

ଵߗ4
ଶߗଶ

ଶ ൬ܿߗݏ݋ଶݐ െ
ଶߗ
ߙ
൰ݐଶߗ݊݅ݏ ሺ1 െ ݁ିఈ௧ሻ ൅ ܱሺߙሻ 

The original damped excitation is lost in time and for long time both the building and the foundation 
oscillate with the resonance frequency Ω2 of the building; the amplitudes of the oscillations are enhanced 
by the attenuation factor 1/α, as expected; the oscillation amplitude of the foundation is controlled by the 
exciting force, while the amplitude of the building is controlled by the coupling constant. It must be noted 
that was considered above oscillations without a damping factor; a damping factor affects the contribution 
of the normal modes and adds to the attenuation factor of the excitation.   
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Inserting K and Ω1,2 from equations (24), (27) and (28) the leading contributions to the oscillation 
amplitude of the building are obtained 

ଶ଴ݑ                                             ൌ
௙௞మ

ସఈఆభ
మఆమ

మ ൌ
௙బ
ସఈ
ට
ଵିఊ

ఊ
	

ଵ

ට௠భ௠మ൫ఠభ
మାఠమ

మ൯
 ;                                                    (39) 

comparing it with the amplitude ݑଶ଴
௜௦ ൌ ଴݂/݉ଶ߱ଶ

ଶ of an isolated building (without foundation) subject to the 
same force and oscillating with the same frequency ߗଶ ≪ ߱ଶ	, is obtained 

ଶ଴ݑ	                                              ൌ ଶ଴ݑ
௜௦ ఠమ

ସఈ
∙ ට

ଵିఊ

ఊ
∙

ఠమ

ටఠభ
మାఠమ

మ
 ;                                                                   (40) 

it can be seen the enhancement factors ߱ଶ/ߙ arising from resonance and ට
ଵିఊ

ఊ
 arising from the coupling.  

It is worth connecting the force f0 to the amplitude u0 of the ground displacement, in order to compare 
the displacement of the building with the ground displacement. According to the discussion above, assuming 
a good coupling between ground and foundation and a relatively homogeneous structure ground + 
foundation + building it can be used f0=Ku0 (since, for a shear coupling, f0 is of the order ߤ௚ݑ଴

ᇱ , where μg is 
the rigidity modulus of the soil); the oscillation amplitude of the building: 

ଶ଴ݑ	                                                      ≅
ఠభఠమ

ସఈටఠభ
మାఠమ

మ
∙
ଵିఊ

ఊ
 ଴  ,                                                                  (41)ݑ

where appears again the occurrence of an amplification factor ≅ ߱௖/ߙ , where 

 ߱௖ ≅ ߱ଵ߱ଶሺ1 െሻ
ఊ

ସఊ
ඥ ଵ߱

ଶ ൅ ߱ଶ
ଶ  is a characteristic frequency of the structure.  

Finally is obtained the solution of a coupled oscillators subjected to a damped force (shock) without 
oscillations, i.e. for ߱଴ ൌ 0: 

ଵݑ ൌ
௙ఠమ

మ

ସఆభ
మఆమ

మ ቀ݁
ିఈ௧ െ ݐଶߗݏ݋ܿ െ

ఈ

ఆమ
ቁݐଶߗ݊݅ݏ ൅ ܱሺߙଶሻ , 

                                                                                                                                                                  (42) 

ଶݑ ൌ െ
௙௞మ
ఆభ
మఆమ

మ ቀ݁
ିఈ௧ െ ݐଶߗݏ݋ܿ െ

ఈ

ఆమ
ቁݐଶߗ݊݅ݏ ൅ ܱሺߙଶሻ ; 

it should be noticed that the shock excites the oscillations with the lowest frequency (Ω2), similar with an 
oscillating shock), and there is no enhancement of the oscillations, as expected.  

5.  Results and Discussion  
The vibrations of an elastic bar extending above the ground surface with one end embedded in the 
ground are described and the response of the bar to various ground excitations applied to its lower 
end is calculated. Two bars coupled along their length are also considered; it is shown that for bars 
with very different elastic properties the eigenfrequencies of the system are given mainly by the 
"softer" bar. Such an information may be useful for composite structures, including, for instance, 
voids. Making use of the information gained from the vibrating bars are examined the formulation 
of the model of two coupled harmonic oscillators, and its application to the structure building-



9

1234567890

World Multidisciplinary Earth Sciences Symposium (WMESS 2017) IOP Publishing

IOP Conf. Series: Earth and Environmental Science 95 (2017) 032017    doi   :10.1088/1755-1315/95/3/032017

foundation. The coupling lowers the low frequency of the system and raise the upper frequency. 
The response of two coupled oscillators to an oscillating shock is calculated, and amplification 
factors similar with the vibrating bars are highlighted. 

6.  Conclusions 
Conclusion derived from the present study is that the model of embedded elastic bar can be used for 
investigating the earthquakes effects upon constructions. At the same time, the model provides a useful tool 
for studying the vibrations of two coupled oscillators, with relevance for building base isolation concept. It 
is shown in this paper that this model, although promising, does not lead to a simple, unique, practical design 
conclusion.  
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