
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

World Multidisciplinary Earth Sciences Symposium (WMESS 2017) IOP Publishing

IOP Conf. Series: Earth and Environmental Science 95 (2017) 022002    doi   :10.1088/1755-1315/95/2/022002

Laboratory Investigation of Buried Pipes Using Geogrid and 
EPS Geofoam Block  

O. Khalaj 1, M. Azizian 2, S.N. Moghaddas Tafreshi 2, B. Mašek 3 
1 Regional Technological Institute, University of West Bohemia, Plzen, Czech Republic 

2 Department of Civil Engineering, K.N. Toosi University of Technology, Valiasr St., 
Mirdamad Cr., Tehran, Iran 

3 The Research Centre of Forming Technology, University of West Bohemia, Plzen, 
Czech Republic 

khalaj@rti.zcu.cz 

Abstract. This paper describes the results of laboratory tests conducted on flexible PVC pipes with 
diameter of 160 mm, buried in unreinforced and reinforced trench with geogrid layer and expanded 
polystyrene (EPS) geofoam block. The repeated load with amplitude of 450 kPa and frequency of 
0.33 Hz was applied on the trench surface, using plate loading at a diameter of 150 mm to simulate 
the vehicle loads. Vertical diameter strain (VDS), strain at pipe’s crown and transferred pressure on 
the pipe’s crown were recorded throughout the test for up to 500 cycles of loading. The variables 
examined in the testing program include thickness of EPS block (30, 60 and 100 mm) and its density 
(10, 20 and 30 kg/cm3). The pipes were embedded at depths 1.5 times their diameter and the width 
of EPS block was kept constant at 2.0 times the pipe diameter in all tests. The results show that the 
values of VDS and pipe strain increased rapidly during the initial loading cycles, thereafter the rate 
of deformation and strain reduced significantly as the number of load cycles increased. According to 
the results, the minimum VDS and pipe’s crown strain were provided by 100 mm thickness and 30 
kg/cm3 of EPS block placed over the pipe with a geogrid layer giving values of, respectively, 0.15 
and 0.10 times those obtained in the reinforced trench with a geogrid layer. 

1. Introduction 
Expanded polystyrene (EPS) geofoam as a lightweight material with the density about a hundreds of soil 
has been used in engineering applications since 1950s. EPS geofoam is utilized in (1) reducing settlement 
below embankments, (2) sound and vibration damping, (3) reducing lateral pressure on sub-structures, and 
(4) reducing stresses on buried conduits and related applications [1]. 

Improvement behaviour of buried pipes against applied loads have been studied by many researchers [2-
8]. In all cases, EPS blocks or geogrid layers show significant improvement in the behaviour of buried pipes 
when use inside the soil mass above pipe. Kim et al. [2010] addressed the pressure reduction on the crown 
of buried pipe under the static loading, due to use of EPS blocks over the buried pipes. The model test shows 
that the width of EPS block influences the pressure acting on the pipe’s crown. They reported the optimal 



2

1234567890

World Multidisciplinary Earth Sciences Symposium (WMESS 2017) IOP Publishing

IOP Conf. Series: Earth and Environmental Science 95 (2017) 022002    doi   :10.1088/1755-1315/95/2/022002

width of EPS block approximately of 1.5 times the pipe diameter. Anil et al. (2015) investigated the 
performance, strength and energy absorption capability of EPS block over the buried pipes against impact 
forces. Their investigation is done by using drop weight impact testing apparatus. The results show all 
protective layers affected the behaviour of pipes positively. However, the best performance was obtained 
from the thickest EPS block. Hedge and Sitharam [2015] conducted experimental studies to explore the 
possibility of using combination geocell and geogrid reinforcement system in protecting a buried pipe. Their 
results show the use of both geocell and geogrid reinforcements have more significant reduction in the 
deformation of the pipe as compared with alone geocell or geogrid. Moghaddas Tafreshi and Khalaj, [2008] 
investigated the behaviour of buried flexible plastic pipes in geogrid reinforced sand under repeated 
loadings. They reported that the rate of pipe deformation decreases significantly as the loading cycles 
increase and the optimum embedded depth of the first reinforced layer is approximately 0.35 times of the 
loading surface width. 

Given the potential of geosynthetic reinforcement and EPS geofoam block to provide the improved 
behaviour of buried pipe in the previous section, a series of tests were performed to evaluate the performance 
of buried pipes subjected to repeated loading, when supported by both geogrid reinforcement and EPS block, 
simultaneously. 

2. Material Properties 
2.1. Soil 
The used soil in the trench (around and above the pipe) has a gradation curve as shown in ‘Figure 1’. The 
maximum and average particles size of the soil was 9.8 mm and 2.2 mm, respectively. Note the size of the 
soil particles is based on the ASTM D 2321-08 standard which limited the grain size of soil around the pipe 
to be maximum 38 mm. The soil is classified as well-graded sand (symbolized as SW) in the Unified Soil 
Classification System (ASTM D 2487-11). According to the standard proctor compaction test (ASTM D 
1557-12), maximum density and optimum moisture content of the soil were 21.5 kN/m3 and 9.5%, 
respectively. 

 

Figure 1. Gradation of trench soil 
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2.2. Geofoam 
In order to take the advantage of EPS materials properties such as lightweight features and energy absorption 
capabilities, EPS blocks with a rectangular cross section at three densities of 10, 20 and 30 kg/m3 were 
buried over the pipe. ‘Figure 2’ shows the stress-strain relation of three uniaxial tests on EPS blocks with 
three densities and with dimensions of 5*5*5 cm under strain controlled conditions. As seen in this figure, 
with increase in the strain level, the strain hardening behaviour would be visible (Ossa and Roma, 2009).  

 

Figure 2. stress- strain behaviour of EPS blocks 

‘Figure 2’ shows that the compressive strength of EPS blocks at 10% strain are 34, 57.1 and 134.3 kPa 
for three densities of 10, 20 and 30 kg/m3, respectively. This shows that the compressive strength varies 
non-linearly with density of EPS blocks. This is in line with the ASTM C 578-95. 

2.3. Geogrid 
To investigate the effect of soil reinforcement on the behaviour of buried pipe, one layer of geogrid was 
used in the tests. The engineering properties of this geogrid are presented in Table 1. 

Table 1. Engineering properties of geogrid 

Ultimate Tensile Strength 
(kN/m) 

Mass Per Unit Area 
)2m/gr( 

Aperture Size 
(mm) 

Thickness 
(mm) 

Aperture 
Figure 

5.8 695 27*27 5.2 hexagonal 

2.4. Pipe 
The tests were conducted on PVC pipes with ratio of pipe diameter to thickness equal to 50. These pipes 
are practical for swage and drainage. In this study, the pipes had 160 mm external diameter, 3.2 mm wall 
thickness and 980 mm length. To prevent binding against the end walls of testing tank, the length of the 
pipe was 20 mm less than the length of the stiff tank. 
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3. Test apparatus 
The test apparatus consists of three main parts, (1) test tank, (2) loading system and (3) data acquisition 
system. The test tank has the length, width and height of 1000 mm. To monitor the pipe behaviour, 
transparent glass (plexiglass) was used in one side of testing tank, perpendicular to the longitudinal pipe 
axis. Loading system consists of a hydraulic cylinder which can produce static and cyclic loading up to 10 
kN. Data acquisition system controls the whole system within internal processor which records all the output 
data streams from different sensors (e.g. load cell, strain gauge, pressure cells and LVDTs). The trench 
contains the reinforced soil, EPS block and model pipe testing, was prepared in the testing tank. The trench 
has a width of 600 mm, length 1000 mm and its height varies depending on the embedment depth of the 
buried pipe.  

Based on ASTM D 2321-08 recommendation, the width of the trench should be at least equal to 
(W=1.25D+300). According to AASHTO (2010) the minimum width of the trench should be greater than 
the values represented in Eqs. (1) and (2). 

 

1.5 305W D   (1)

406W D   (2)

W and D are respectively the minimum trench width (in mm) and pipe diameter (in mm). Thus, to satisfy 
the minimum width defined by the Standards, trench width of 600 mm is selected. ‘Figure 3’ shows the 
schematic view of the experimental model setup and parameters were used in the experiments. 

(a) (b) 

Figure 3. (a) test setup (b) geometry and test parameters 

4. Preparation of Testing Model 
Soil density in trench was 18.5 kN/m3 with 6% moisture. With regard to the uniform trench, soil pouring 
was compacted in several layers. Each layer had 20 mm thickness and they compacted uniformly by 
dropping weight of 5.5 pounds over a metal plate with dimensions of 300 × 100 mm (in direction of trench 
length). The density of the soil layers was controlled by weighing the amount of the required soil and flexible 
rulers were mounted on the walls of trench. It is notable that the density and moisture of the soil layers in 
trench (about 88% relative compaction) was according to ASTM D 2321-08 that limits the minimum relative 
compaction of SW soil in the buried pipe trench to 85%. In the reinforced trench, when the soil level was 

EPS Block

Reaction Beam

Geogrid

Load Cell

LVDT

Pressure 
Cells

W=600 mm

EPS Blocks

u=50 mm

z
Geogrid

D=160 mm

20 mm

Cyclic Loading

B=150 mm

Trench 
Wall



5

1234567890

World Multidisciplinary Earth Sciences Symposium (WMESS 2017) IOP Publishing

IOP Conf. Series: Earth and Environmental Science 95 (2017) 022002    doi   :10.1088/1755-1315/95/2/022002

reached to the springline and crown of the pipe, the pressure cells were implemented. EPS blocks were also 
installed over a 20 mm soil layer which was compacted over the buried pipe crown. Geogrid layer was 
implemented at depth of 0.33B (B= diameter of loading plate) beneath the loading surface (Moghaddas 
Tafreshi and Khalaj; 2008).  When the soil surface reached to the required level, a rigid loading plate with 
a diameter of 150 mm and thickness of 25 mm was placed over the center of trench and the related sensors 
were adjusted. In all the tests, the repeated loading with an amplitude of 450 kPa and frequency of 0.33 Hz 
was applied on the loading plate to simulate the vehicle loading. 

5. Testing program 
Table 2 shows the details of testing program. In all tests, the pipe was embedded at the depth of 1.5D (D= 
pipe diameter) and the width of EPS block was kept constant at 2.0D.  

Table 2. Details of testing programs 

Test Condition EPS Thickness (mm) EPS Density (kg/m3) No of Test. 

Unreinforced   1+1* 

Geogrid reinforced 1+1* 

EPS block in addition to geogrid 
layer 

100 10 
5+4* 100 20 

30,60,100 30 
*The tests which were performed two or three times to verify the repeatability of the test data 

One of the important issues in laboratory studies is repeatability of results to ensure accuracy in 
measuring the input and output parameters. For this reason, some tests were repeated to monitor system 
performance and its accuracy. Repeated test results show the small difference (less than 6%) which is 
negligible in geotechnical applications. 

6. Results and discussion 
In this section the test results of the laboratory model are represented and discussions are made for 
determining the effect of different parameters on the buried pipes behaviour. Since the main criteria of the 
flexible pipes safety are their deformation (Moser and Folkman, 2001), the VDS of the pipe diameter is 
considered as the most significant and important factor. 

6.1. The effect of geogrid layer 
To reduce the pipe deformation, a layer of geogrid was laid at the optimum depth beneath the loading 
surface. The length and width of geogrid layer was equal to the trench proportions. The results in ‘Figure 4’ 
show that the values of VDS and pipe strain increases rapidly during the initial loading cycles, thereafter 
the rate of deformation and strain decrease significantly with increase in the number of load cycles. For the 
reinforced test with geogrid layer, maximum vertical diameter strain (VDS) of pipe at the end of the loading 
cycle has 19% reduction compared to the unreinforced condition. Reduction in the VDS of the buried pipes 
is originated from the geogrid effects such as membrane effect and stress redistribution which would reduce 
the transferred stress over the buried pipe. As seen in ‘Figure 4’, the reduction trend in the circumferential 
crown strain of the pipe is parallel to the VDS. Pipe buried in geogrid reinforced trench shows 20% reduction 
in maximum circumferential strain of pipe’s crown compared to the unreinforced condition. 
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a) b) 
Figure 4. Variation of the (a) maximum VDS and (b) maximum crown strain of the pipes buried in 

unreinforced and geogrid reinforced trench with number of load cycle 

Table 3 shows the maximum vertical pressure acting on the crown and on the sides (springline) of the 
pipes at the end of cyclic loading for both unreinforced and reinforced installations. As seen with 
implementation of a geogrid layer, transferred vertical pressure on side and crown of the pipe decrease. 

Table 3. Maximum transferred vertical pressure in the crown and side of the pipes at the end of the load 
cycle for unreinforced and reinforced trench with a geogrid layer conditions. 

Test Condition 
Pressure (kPa) 

Springline Crown 

Unreinforced 20 45 

Geogrid Reinforced 17 35 

6.2. The effect of EPS block and geogrid layer  
Due to the ultra-lightweight EPS blocks and its compressibility, arching phenomena could occur in the 
trench. Arching could cause a reduction of the exerted stress on the buried pipe and provides a better 
situation in aspect of pipe protection. In this section, the effect of the EPS blocks thickness and their density 
on behaviour of the buried pipes was examined. 

6.2.1. The effect of EPS block thickness 
‘Figure 5’ shows the variation of maximum VDS and maximum strain of pipe’s crown with the number of 
load cycle for different installations of EPS block and geogrid layer.  

This figure shows with increase in thickness of the EPS block, the VDS and crown strain values of the 
pipe increase. In the last cycle of loading, the minimum VDS and minimum pipe’s crown strain are provided 
by 100 mm thickness of EPS block and geogrid layer giving 84.4% and 89% reduction respectively, in 
comparison with those obtained in the reinforced trench with a geogrid layer. 
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a) b) 

Figure 5. Variation of the (a) maximum VDS and (b) maximum crown strain of the pipes buried in 
unreinforced, geogrid reinforced and EPS block plus geogrid reinforced trench with the number of load 

cycle 

6.2.2. The effect of EPS block density 
EPS blocks with a thickness of 100 mm and 320 mm width were used in three densities of 10, 20 and 30 
kg/m3. With increase in the density of EPS blocks the area under the strain–stress diagram (figure 2) 
increases, thus the growth in the block ability for energy absorption would be expected. 

‘Figure 6’ shows the variation of the maximum VDS and pipe’s crown strain with the number of loading 
cycles for different densities of EPS block. Table 4 shows the maximum reduction in the VDS and crown 
strain values of the pipes for the trench including EPS block and geogrid layer compared with those obtained 
for the reinforced trench by a geogrid layer. ‘Figure 6’ and Table 4 show that with increase in the density 
of the EPS block, the VDS and crown strain values of the pipe significantly decrease. For example, with 
decrease in the density of EPS block from 30 to 10 kg/m3, the rupture was happened in the pipe. It could be 
attributed to the lack of sufficient resistance at low density of EPS block (10 kg/m3), punching in EPS block 
and consequently large transferred stress on the pipe. 

 

Table 4. Maximum percentage reduction in VDS and crown strain values of pipe for the trench including 
EPS block and geogrid layer compared with those obtained for the reinforced trench by a geogrid layer 

(hg=100 mm) 

EPS Density (kg/m3) VDS Crown Strain 

10 Pipe rupture Pipe rupture 

20 60.7% 57% 

30 84.4% 89% 
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a) b) 

Figure 6. Variation of the (a) maximum VDS and (b) maximum crown strain of the pipes buried in 
unreinforced, geogrid reinforced and EPS block plus geogrid reinforced trench with the number of load 

cycle 

Table 5 shows the maximum vertical pressure acting on the crown and side of the pipes at the end of 
cyclic loading for different installation. As seen with increase in density of EPS block, the transferred 
pressure on the crown and side of the pipe decreases. Decrease in pressure acting on the pipe’s crown has 
the same trend with pipe crown strain and VDS.  

 
Table 5. Maximum transferred vertical pressure in the crown and side of the pipes at the end of the load 

cycle for different conditions 

Test Condition 
Pressure (kPa) 

Springline Crown 

Geogrid 
Reinforced plus 
EPS block with 

density of 

30 kg/m3 4 8 

20 kg/m3 15 ------- 

10 kg/m3 37 125 

 
7. Conclusion 
One of the practical advantage of Expanded Polystyrene (EPS) blocks are their performance in stress 
attenuation on buried conduits and pipes. This paper addressed the effect of EPS blocks and geogrid layer 
on the behaviour of the buried pipes subjected to the simulated traffic load. The results could be summarized 
as follow: 
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 In the geogrid reinforced system, the vertical diameter strain (VDS) and circumferential crown 
strain of the buried pipe at the end of the loading cycle have 19% and 20% reduction respectively, 
as compared with the unreinforced system. 

 With increase in the thickness of the EPS block, the vertical diameter strain (VDS) and pipe crown 
strain decreases. For example, with increase in the thickness of EPS block from 30 mm to 100 mm, 
the VDS value have 83% reduction. 

 With decrease in the density of the EPS block, the vertical diameter strain (VDS), pipe crown strain 
and vertical pressure in crown and side of the pipe increase. The results show that for the low 
density of the EPS blocks (e.g. 10 kg/m3), rupture in the pipe would be anticipated. 
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