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Abstract. Quantification of geomorphometric features is the keystone concern of the current 
study. The quantification was based on the statistical approach in term of multivariate analysis 
of local topographic features. The implemented algorithm utilizes the Digital Elevation Model 
(DEM) to categorize and extract the geomorphometric features embedded in the topographic 
dataset. The morphological settings were exercised on the central pixel of 3x3 per-defined 
convolution kernel to evaluate the surrounding pixels under the right directional pour point 
model (D8) of the azimuth viewpoints. Realization of unsupervised classification algorithm in 
term of Iterative Self-Organizing Data Analysis Technique (ISODATA) was carried out on 
ASTER GDEM within the boundary of the designated study area to distinguish 10 morphometric 
classes. The morphometric classes expressed spatial distribution variation in the study area.  The 
adopted methodology is successful to appreciate the spatial distribution of the geomorphometric 
features under investigation. The conducted results verified the superimposition of the delineated 
geomorphometric elements over a given remote sensing imagery to be further analyzed. Robust 
relationship between different Land Cover types and the geomorphological elements was 
established in the context of the study area. The domination and the relative association of 
different Land Cover types in corresponding to its geomorphological elements were 
demonstrated. 

1.  Introduction 
Morphometry was evolved due to the need in many disciplines for repeatable measurements of shape, 
and thus a mathematical description of form. Precisely Pike [1] and Parker [2] as the form and structure 
of an object or the arrangements and interrelationships between the parts of an object defined the term 
Morphology. Morphology is related to shape, and digital morphology describes and analyzes the shape 
of a digital object, mainly a raster object [3]. 

Recent directions of the discipline now include computer visualization through relief shading, surface 
modelling with the triangulated irregular network, fractal characterization of topography and the 
automatic recognition of terrain features from digital elevations and imageries by procedures adapted 
from image processing or by the application of customized algorithms [4,5]. A better explanation of 
spatial patterns with tools (fuzzy set logic, neural networks) that have proven useful in allied disciplines 
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but until recently, not available in geomorphometry is now being developed for the recognition and 
quantification of terrains, and hence their discrimination [3]. 

Over the past decades, much effort has been devoted to describing agents of geomorphic changes 
and how it works, even to the extent of modelling physical processes at the expense of numerical 
representation of the topography itself. Moore et al. [6], Burrough and McDonnell [7] and El-Bastawesy 
et al. [8] attributed this problem to the less significant role of topography in process-oriented work, 
obstacles in quantifying terrain. 

Geomorphometry can be diversely approached because the land surface can be quantified from 
several perspectives. According to Weibel and Breandli [9] and Panhalkar [10], there are two main 
approaches to the study of geomorphometry, namely: general and specific. General geomorphology 
focuses on continuous topography or landscape and it is applicable to a wide variety of geomorphic 
features. On the other hand, specific geomorphometry involves the use of quantitative measures 
designed for analysis of specific landscape features.  

Remote sensing data can be combined with other data to address a specific practical data. This has 
been demonstrated in various applications, such as land use planning, mineral exploration, and water 
quality mapping [11,12]. McDermid and Franklin [13] also emphasized that remotely sensed data can 
provide useful surrogate information for geomorphic processes, which are products of complex 
interactions between agents of geology, climate, hydrology, soils, and organisms. However, the 
methods, previously employed for extracting geomorphologically significant information from digital 
data sets are segmented and relatively poorly developed and, in most cases, employ processing and 
classification techniques which have been developed for other purposes [14, 15]. 

Unsupervised classification can be defined as the identification of natural groups, or structures, 
within multispectral data [11, 16]. Unsupervised classification is the identification, labeling, and 
mapping of natural groupings within elevation data. This technique does not utilize training data as the 
basis for classification if values within a given geomorphologic unit should be close together in the 
measurement space, whereas data in different classes should be comparatively well separated [17]. 
Unsupervised classification proceeds by making thousands of distance calculations as a means of 
determining similarities between the many pixels and groups within an image. Nonetheless, distance 
measures are the central point of unsupervised classification. It must be noted that not all distances 
measured are based on Euclidean distance. Other distance measures have been defined for unsupervised 
classification, [18].  

The aim of the current study is to estimate the spatial distribution of the different type of slope, 
steepness. Moreover, to examine the relationship between the geomorphology and the land cover types 
in the study area. The focus here is on the association between the relative occurrence and abundance of 
Land Cover types within the geomorphological units.  

2.  Materials and Methods 
2.1. Study area 
The study area located at peninsula Sithonia, Halkidiki. Most of the major forest cover types found in 
Greece is presented in the area [19]. Sithonia constitutes the middle of the three peninsulas of Halkidiki 
and occupies the place with latitude between 39˚ 56ˈ up to 40˚ 14ˈ N and longitude between 23˚ 36ˈ up 
to 24˚ 00ˈ E. The peninsula is considered as a continuation of the mountain Holomonta. Its acreage is 
about 450 km2, half of which are occupied by forests of Aleppo pine (Pinus halepensis), which settles 
its optimum development in Sithonia [20]. The elevation ranges from sea level up to 823 m (hill 
Polielaios). The relief is gently lapping but there are places with an inclination of 50-60%. The peninsula 
does not have any rivers, but only small, numerous water streams with seasonal activity, which create 
gully erosion phenomena (Figure 1).  
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Figure 1. Location of the study area 

 
2.2. DEM extraction  
Digital data used in this study are the Digital Elevation Model (DEM) of Sithonia peninsula and its 
derived data (thematic maps) such as slope, aspect, and other morphometric maps. The DEM comes out 
from standard ASTER stereo pairs, generated by automatically correlating stereo ASTER or an images 
stereo pair. It exhibits a pixel with 30 m spatial resolution and is registered to UTM WGS-84 coordinate 
system. Other ancillary data used are the geological map and the satellite image of the study area. 

 
2.3. Methodological Framework 
2.3.1. Convolution Kernel 

The methodological framework implemented in the current study is based on convolution kernel. 
The kernel course is to average quantified pixels across the entire image. According to Jensen [21], the 
kernel changes the spatial frequency features of the image (Table 1). The directional kernel of 3x3 pre-
defined was used over the designated DEM with the intention of the topographic incline assessment 
utilizing the eight directions pour point model (D8) [22]. 

 
Table 1. The 8 coefficients value employed for the D8 directional pour point model. 

Azimuth 
ESRI 
code 

3x3 pre-defined kernel Azimuth 
ESRI 
code 

3x3 pre-defined kernel 

North West 32 
-1.000 0.000 0.000 

South 
East 

2 
0.000 0.000 0.000 

0.000 1.000 0.000 0.000 1.000 0.000 
0.000 0.000 0.000 0.000 0.000 -1.000 

North 64 
0.000 -1.000 0.000 

South 4 
0.000 0.000 0.000 

0.000 1.000 0.000 0.000 1.000 0.000 
0.000 0.000 0.000 0.000 -1.000 0.000 

North East 128 
0.000 0.000 -1.000 

South 
West 

8 
0.000 0.000 0.000 

0.000 1.000 0.000 0.000 1.000 0.000 
0.000 0.000 0.000 -1.000 0.000 0.000 

East 1 
0.000 0.000 0.000 

West 16 
0.000 0.000 0.000 

0.000 1.000 -1.000 -1.000 1.000 0.000 
0.000 0.000 0.000 0.000 0.000 0.000 
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The convolution kernel starts from the upper right corner (NW) and processes clockwise to rearrange 
the neighbour pixels around the kernel center. The resulting values represent local pixel variations in 
the topographic features of the steepness, shape, and orientation. Moreover, the kernel expands to form 
eight layers in the consequential input dataset to qualify the multispectral classification techniques. 

 
2.3.2. ISODATA classification 

ISODATA classification is an analytical procedure based on clustering, using different algorithms. 
The whole image of the study area has been segmented into 10 spectral categories. Various techniques 
have been used to get information that is more detailed. The algorithm used to compute Optimum Index 
Factor (OIF) for reliable ISODATA classification at any subset of channels was carried out following 
Chavez et al. [23]. The channels combination with the largest OIF has the most information, as measured 
by variance, with the least amount of duplication, as measured by correlation [24, 25]. 

 
2.3.3. Statistical extraction 

The classified thematic layer (ISODATA clustering output) was used as an input band and the 
elevation difference stack file consisting of eight layers was used as an input file under the ENVI 
environment. This procedure allowed us to obtain the mean values of the elevation variances between 
each of the D8 neighbour’s model and its central pixel and for the 10 classes. Also, mean and standard 
deviations were extracted separately for each derived map; slope, aspect, and DEM. 

 
2.3.4. Correspondence analysis  

Correspondence analysis is a geometric-based technique used to show the columns and the rows of 
a given points matrix into vector spaces in dual low dimensional. Therefore, the correspondence analysis 
is an experimental/descriptive method intended to examine one-way and/or multi-way tables comprising 
correspondence measures between the columns and the rows of a given matrix. The correspondence 
matrix may distinguish any indication of confusion, affinity, interaction similarity or between the 
columns and the rows [26]. 

 
2.4. Accuracy assessment  

The slope and the aspects extracted from the study area DEM were exercised to evaluate the different 
classes classification based on accuracy assessment identification. Mean and standard deviation of the 
DEM and its derived thematic layers in term of aspect and slope maps were also utilized in additional 
quantitative comparison with the resulted classification map. Field trips were carried out across the 
designated study area to collect ground truth data for a precise resolution of comparing the 
geomorphologic settings with the Land Cover type of the study area. 

3.  Results and discussions 
3.1. Statistical interpretation 
The eight mean elevation differences were obtained from the classified map (thematic layer). On the 
classified map in Figure 2, the different classes were depicted by 10 different colors for visual 
interpretation. To further verify the accuracy of the classified map statistical information, a numerical 
value was extracted from each derived data set DEM, slope and aspect, maps. These statistical values 
were compared with the statistics obtained directly from the classified thematic layer, which gave similar 
results necessary for the combined morphostructural interpretation.  
 

The mean statistics of the derived data were matched with the corresponding class on the classified 
map. In summary, there was a corresponding relationship between the unsupervised classification map 
and spatial analysis of the DEM (slope, aspect, and elevation) based on pixel digital number observation 
[27]. 
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Figure 2. Morphometric ISODATA classification map of the study area 

 
Aspect shows the eight major compass directions or the prevailing direction the slope faces, relative 

to the 10 classes. The aspect class frequency distribution plot better describes classes 3 and 5, where it 
is possible to verify that the main azimuth direction for both classes is around 315° (NNW trend). 

 
It shows the minimum, maximum, the mean slope, and the standard deviation for the ten classes. The 

slope was not described only by degree, but also by the relative inclination of the slope elements. 
Distinguished classification differences were noticed between the slightly inclined areas with aspect 

positioned to South West and the sharply inclined areas with aspect positioned to South, South West. 
Class number 10 with average elevation of 915 a.s.l. and 39 degrees of steep slope expressed sharp relief 
rather than class number 3 with an average elevation of 510 a.s.l. and average slight slope of 8.9 degrees. 
On the other hand, class 10 with aspect values of 192 degrees pointed to South, South West direction, 
and class seven with aspect value of 308 degrees and pointed to North West direction. 

 
The unsupervised classification algorithm based on ISODATA classifier has generated 10 classes 

with different morphostructural elements variation. The ISODATA classification map demonstrated in 
Figure 2; is visually interpreted using different colour per class. The average of the elevation differences 
between the central of the 3x3 pre-defined kernel and its surrounding values were inferred. Also, the 
spatial distributions of the different classes and their association with the local morphologic 
characteristics have been examined and are presented in Table 2. 
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Table 2. Morphostructural interpretation of unsupervised classification algorithm. 

Class  Colour  Interpretation 
1 White  Slightly inclined areas fronting South West (SW) 
2 Red  Averagely inclined areas fronting South East (SE) 
3 Maroon  Slightly inclined areas fronting North, North West (NNW) 
4 Olive Green  Slightly / Averagely inclined areas fronting North East (NE) 
5 Light Green Averagely inclined areas fronting North, North West (NNW) 
6 Yellow  Sharply inclined areas fronting North East (NE) 
7 Cyan  Sharply inclined areas fronting North West (NW) 
8 Purple  Sharply / Averagely inclined areas fronting West (W) 
9 Blue  Sharply / Averagely inclined areas fronting South West (SW) 
10 Violet  Sharply inclined areas fronting South, South West (SSW) 

 
3.2. Geomorphological units/Land Cover relationship 
This part of the study examines the relationship between the Land Cover types and the geomorphological 
elements the of the designated study area. The Land Cover type’s classification was derived from 
Sentinel-2 multispectral satellite image using CORINE project standards. Figure 3 shows the Land 
Cover type’s classified map with its consistent legend displays the 11 Land Cover classes recognized in 
the study area. To understand the relationship between geomorphological elements and Land Cover 
classes a correspondence analysis was executed and is presented overleaf in Tables 3 and 4. The analysis 
revealed the following findings in terms of the association between the Land Cover type and 
geomorphological units. 

 
Figure 3. Land Cover classes map of the study area 
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The Land Cover type map is with 11 classes while the geomorphological unit's map has 10. Both 
maps have been displayed with their corresponding legend in different colours depicting various classes 
for visual interpretation.  

The relative distribution of each Land Cover type in relation to geomorphological units examines the 
relative changes in Land Cover type abundance as a function of geomorphology. Data were obtained 
after a linear transformation that transforms the correspondence table into a standard scale, where the 
statistical bias was eliminated. Standardization is necessary because, without standardization, it is not 
possible to meaningfully compare the original values, since the geomorphological units are not evenly 
represented; for instance, class 1 (Slightly inclined areas fronting SW) accounted for 16.22% of the 
whole study area, while class 10 (Sharply inclined areas fronting SSW) accounted for 3.12%. Also, 
observations are often standardized from symmetric distributions to express them on a common scale 
[28]. To calculate the distribution of respectively Land Cover class within the geomorphological 
elements, the number of cases representative of each Land Cover class was divided by its total. This 
resulted in a new cross-tabulation showing the distribution of the Land Cover types within the 
geomorphological elements [29]. 

The variation of the distribution of the Land Cover classes between the geomorphological elements 
can now be explained by two variables; the first is the changes in Land Cover type due to geomorphology 
and the second the size of the geomorphological unit. To explain the relative change in Land Cover 
abundance as a single function of geomorphology, the effect of the variations in geomorphological unit 
size was eliminated by means of standardization. In the process, the calculated percentages of Land 
Cover types were divided by their corresponding geomorphological unit fraction area [30].  

After standardizing, the association between the two variables was examined. It was noticed that, in 
geomorphological unit 1 (Slightly inclined areas fronting SW) the most dominant Land Cover class was 
class 9 (complex cultivation patterns), although in geomorphological element 4 (Slightly / averagely 
inclined areas fronting NE), the dominant Land Cover class was class 10 (broad-leaved forest) as 
demonstrated in Table 3. 

 
Table 3. Summary of the relative relationship of the Land Cover type within the geomorphologic 

elements 
Class  Geomorphologic  

units 
Land Cover Type  
(Corine) 

1 Slightly inclined areas fronting South West (SW) Complex cultivation patterns (9) 
2 Averagely inclined areas fronting South East (SE) Sclerophyllous vegetation (2) 
3 Slightly inclined areas fronting North, North West (NNW) Bare rocks (1) 
4 Slightly / Averagely inclined areas fronting North East (NE) Broad-leaved forest (10) 
5 Averagely inclined areas fronting North, North West (NNW) Transitional woodland/shrub (5) 
6 Sharply inclined areas fronting North East (NE) Sparsely vegetated areas (3) 
7 Sharply inclined areas fronting North West (NW) Transitional woodland/shrub (5) 
8 Sharply / Averagely inclined areas fronting West (W) Coniferous forest (11) 
9 Sharply / Averagely inclined areas fronting South West (SW) Mixed forest (7) 

10 Sharply inclined areas fronting South, South West (SSW) Mixed forest (7) 
 
The correspondence between the Land Cover classes and the geomorphological elements showing 

the relative distribution of the main Land Cover class in relation to the geomorphological element is 
summarized in Table 4. 

 
Table 4 shows the results of examination of the foremost Land Cover class in each morphological 

unit. The problem to be addressed was to determine the foremost Land Cover class in each 
morphological element. This was accomplished by calculating the percentages of Land Cover types in 
each morphological unit. It was noticed from Table 5, Olive Land Cover class was the most dominant 
in all the geomorphological elements, followed by Natural Grassland Land Cover class. This was 
decidedly reliable with ground truth data collected from the field trip within the study area. 



8

1234567890

World Multidisciplinary Earth Sciences Symposium (WMESS 2017) IOP Publishing

IOP Conf. Series: Earth and Environmental Science 95 (2017) 042041    doi   :10.1088/1755-1315/95/4/042041

 
 
 
 
 
 

Table 4. The dominant land Cover class in each morphological unit 
 Geomorphological unit classes (%) 

     Geomorphological

                         unit 

Land Cover 

1 2 3 4 5 6 7 8 9 10 

1 
0.08 0.00 0.29 0.00 0.1 0.00 0.08 0.12 0.00 0.00 

2 
0.53 1.05 0.52 0.99 0.65 0.52 0.29 0.34 0.43 0.46 

3 
10.26 15.89 9.97 9.77 7.38 24.65 5.78 9.2 16.1 21.12 

4 
0.15 0.13 0.22 0.1 0.08 0.00 0.00 0.09 0.16 0.00 

5 
5.82 5.07 7.33 7.18 13.32 11.41 19.04 12.1 9.9 10.78 

6 
17.26 17.52 17.52 17.75 21.77 25.28 20.63 19.2 19.2 17.08 

7 
0.52 0.48 0.27 0.36 0.5 0.31 1.19 0.54 2.41 1.97 

8 
47.52 43.12 48.68 49.26 41.34 27.91 33.41 38.76 37.42 39.01 

9 
8.17 10.15 6.04 7.51 4.18 3.39 2.18 3.4 4.05 2.47 

10 
0.52 1.04 1 1.56 1.32 0.78 0.54 1.14 0.46 0.34 

11 
9.89 6.23 8.91 6.21 10.13 6.36 17.53 15.86 10.54 7.33 

 
Explicitly, Table 5 pointed out the robust spatial correlation between the Sparsely Vegetated Areas 

class and the sharply inclined areas fronting North East. Sparsely Vegetated Areas Land Cover class 
was counted for 24.65% of the total coverage of the morphometric element. An evocative pattern was 
also distinguished between the sharply / averagely inclined areas fronting west. Artificial Surfaces class 
and Bare Rock class were imprecisely characterized. This could be explained since each class coverage 
was less than 1% in all the geomorphological elements. 

 
 

Table 5. CORINE interpretation of the Land Cover maps 
 with 11 classes 

Class  Color  CORINE Interpretation 
1 White  Bare rocks 
2 Black  Sclerophyllous vegetation 
3 Yellow  Sparsely vegetated areas 
4 Cyan  Artificial surfaces 
5 Orange Transitional woodland/shrub 
6 Green  Natural grassland 
7 Gold  Mixed forest 
8 Brown  Olive 
9 Violet  Complex cultivation patterns 
10 Red   Broad-leaved forest 
11 Dark Green Coniferous forest 
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4.  Conclusions 
The computerized classification of geomorphometric features from Digital Elevation Model was 
demonstrated for the classification of geomorphological units in Sithonia peninsula. This approach 
should be adopted because it evaluates and discriminates the geomorphometric properties faster than 
manual methods. The utilization of digital data such as DEM in this study allowed for co-registration 
with other digital maps and imagery. Implemented methodology supported comprehensively the spatial 
distribution of the geomorphologic features. Conclusively, the current study has verified a reliable 
different information source that can be used in geomorphological applications. Moreover, the adopted 
methodology delivered evidence about the metamorphological structure delineation in theory and 
practice. Furthermore, the conducted results verified the superimposition of the delineated 
geomorphometric elements over a given remote sensing imagery to be further applied research. The 
prospect of geomorphometry as a field of study lies in its ability to better express terrain texture, 
effective characterization of non-fluvial areas, automated recognition of topographic units, mass-
produced data from remote sensing, and the development of theory. Geomorphometric techniques using 
Digital Elevation Model, apart from discrimination of geomorphological units, hold great promise for 
other various applications such as the identification of landscape unit for soil-landscape, hydrological 
analyses, and the examination of the relationship between land-cover and the land-shaping process. 
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