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Abstract. The modal method represents the derivative of the eigenvector as a superposition of 
all modes. Although this method is relatively effective, it has a problem of modal truncation 
error. In this paper, based on the two kinds of calculation methods of frequency response 
function matrix, the transformation relationship between system matrices and eigensolutions is 
proposed. Meanwhile the transition from the high-order modes to the low-order modes is 
emphasized. Then the conversion relationship is applied to reduce the modal truncation error, 
and finally a more accurate method for sensitivity analysis is derived. 

1.  Introduction 
Sensibility reflects that the change of design variables has an effect on objective function and 
constraint function strongly. It is widely used to calculate the sensitivity of damped eigensystems in 
system identification, model modification, vibration control and structural optimization. Since the 
problem of sensitivity has been proposed, many reseachers in the field developed a large amount of 
methods, which can be mainly divided into three different groups: the algebraic method, Nelson’s 
method and the modal method.  

In 1968, Fox and Kapoor [1] developed an algebraic method. According to this, Garg[10] and 
Rudisill[11,12] investigated the method for general asymmetric eigensystems. Lee [5,6] has extended 
the algebraic method to viscously damped systems. Later, Choi et al.[7] improved the algebraic 
method for asymmetric systems. However, they did not take left eigenvectors into account and were 
restricted to first-order derivatives. Based on previous methods, Li et al.[8, 9] and Brandon[19] 
improved the method for the left eigenvectors and second-order derivatives. Merely requiring modes 
of interest, the algebraic method is accurate and compact. But we will face a matrix decomposition 
problem when solving the algebraic equations of the system. 

By summing a particular solution and a homogeneous solution, Nelson [2] then suggested a method 
for the eigenvector derivatives of undamped systems. Then the method was extended by Ojalvo[3] and 
Dailey[4] to the eigenvalue problem with multiple natural frequencies. Mills-Curran [14] and Tang 
[15,16]applied it to deal with eigensensitivity of the symmetric eigensystems. Friswell and 
Adhikari[13] modified it to symmetric and asymmetric damped systems. Although Nelson’s approach 
is accurate and only requires modes of interest, there remain matrix decomposition problems when the 
particular solution is obtained, which results in heavy CPU computation time. 
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Fox and Kapoor [1] also derived a modal method by applying modal superposition to express the 
derivative of every eigenvector as a linear combination of all eigenvectors. However, this method will 
be computationally expensive if a large number of modes are needed to guarantee the accuracy of 
sensitivities. By the way, it is often difficult to obtain all the modes. By estimating the contribution of 
unavailable higher modes, Wang [17] put forward an improved approximate methods with residual-
static modes. Zeng [18] proposed a highly accurate modal method with shifted-poles. Later, Moon et 
al.[20] proposed a modified modal methods eigenpair sensitivity of asymmetric damped system. 
Obviously, these approaches are less accurate for truncating the higher modes.  

This paper extends the modal method to a more efficient one to calculate the sensitivity of damped 
eigensystems. First, a relationship between system matrices and eigensolutions is proposed based on 
the two kinds of calculation methods of frequency response function matrix. According to the 
relationship, the transition from the high-order modes to the low-order modes is established. At last, 
by applying the conversion relationship and Neumann series with shifted frequency q to reduce the 
modal truncation error, a more accurate method for sensitivity analysis is derived.  

2.  Transformation from higher-order modes to lower-order modes 

2.1.  Preparatory theory 

Lemma (Neumann series) For any matrix N NA C  , the inverse matrix of the matrix ( )NI A  can be 

expressed as the following power series expansion 
1 2 3 4( )N NI A I A A A A      

                                                 (1) 
The convergence condition of this formula is that the maximum eigenvalue of matrix A is less than 1. 

2.2.  Two ways to expand frequency response function matrix 
The free vibration differential equation of the viscous damped linear system with N DOF is as follows 

( )Mx Cx Kx f t                                                                   (2) 

Where ,M C and N NK R  are, respectively, the mass, damping and stiffness matrices. We only 
consider symmetric system matrices with respect to design parameter p in our study.  
Considering the eigenvalue problem of equation (1) 

2( ) 0i i iM C K u   
                                                            (3) 

Where i is the i -th eigenvalue of the system, and iu is the corresponding eigenvector.  

For the viscously damped system expressed by equation (1), the dynamic equation of the system 
in Laplace domain can be expressed as 

2(s ) ( ) ( )M sC K X s F s                                                         (4) 

Where ( )F s  is the forcing vector and ( )X s  is the displacement vector. is  ， (rad/s) is the 
forcing frequency. Equation (4) can be simplified as 

( ) ( ) ( )D s X s F s                                                              (5) 

Where ( )D s  is called the dynamic stiffness, and 2( )D s s M sC K   . 1( ) ( )H s D s   is called the 
frequency response function (FRF) matrix. In viscously damped system, H(s) can also be expressed in 
terms of the eigenvalues and eigenvectors as [21, 22] 

2

1

( )
( )

TN
j j

j j j

u u
H s

s 




                                                       

(6)

 

 

Where (2 )T
j j j ju M C u   . 

2.2.1.  Power series expansion with shifted frequency q and eigensolutions. H(s) can be casted into the 
matrix form: 

1 1( ) ( ) TH s U sI U                                                      (7) 
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Where  ， are diagonal matrices, and 

1 2 2[ , , , ]Ndiag      ， 1 2 2[ , , , ]Ndiag       and 1 2 2[ , , , ]NU u u u            (8) 

By using shift frequency q and Neumann expansion, we can rewrite the inverse matrix in equation (7) 

1( )sI   = 1[( ) ( ) ]qI s q I     = 1 1 1[ ( )( ) ] ( )I s q qI qI        = 1

0

( ) ( )r r

r

s q qI


 



  
   

(9) 

Where q represents a constant of shifted frequency. Substituting the expansion into H(s), 

1 1

0

( ) ( ) ( )r r T

r

H s s q U qI U


  



                                           (10) 

According to what mentioned above, we get a formulation about H(s) with system matrices and shifted 
frequency q. 
2.2.2.  Power series expansion with system matrices. We can reform the dynamic stiffness matrix

2( ) sD s M sC K   as 
1( ) [ ( )]ND s K I sK C sM                                                    (11) 

So the inverse matrix of  D(s) is 
-1 1 1 1( ) [ ( )]ND s I sK C sM K                                                 (12) 

We can expand it through Neumann expansion, 

1 1 1

0 0

[ ( )] ( ) ( ( )) ( )k k k
N k

k k

I sK C sM s K C sM s
 

  

 

        
               

(13) 

Where 1
0 1,NI K C     and 1 1

1 2K k kK C K M 
     

  

Therefore, substituting the equation above into equation 1)()(  sDsH , we can obtain 

1

0 0

( ) ( )k k
k k

k k

H s s K s
 



 

     
                                               

(14) 

Where, 11
1

1
0 ,   CKKK  and 2

1
1

1





  kkK MKCK
  

Here we obtain the FRF matrix only involving system matrices. 

2.3.  Transformation from higher-order modes to lower-order modes 
Comparing the two forms of H(s), we can discover there are some relationships between them. 
Obviously, from equation (10) and equation (14) , we have  

1 1

0

( ) ( )r r T

r

s q U qI U


  



    
0

k
k

k

s




 
                                     

(15) 

From left side to right side of the equation, each item equals accordingly, we obtain 
Tkk UqIUqs 11 )()(   = k

ks   for  ,,2,1,0 k                        (16) 

H(s) can be separated into the lower modes and the higher modes as follows, 
1 1 1 1( ) ( ) ( )T T

L L L L L H H H H HH s U sI U U sI U                                   (17) 

Where ],,,[ 21 LL diag   , 1 2[ , , , ]L Ldiag       and 1 2[ , , , ]L LU u u u   

1 2 2[ , , , ]H L L Ndiag       ， 1 2 2[ , , , ]H L L Ndiag        and 1 2 2[ , , , ]H L L NU u u u    
Just like H(s) expanded in 2.2.1, here we can express H(s) as 

1 1 1 1

0

( ) [ ( ) ( ) ( ) ( ) ]r r T r r T
L L L L L H H H H H

r

H s s q U qI U s q U qI U


     



          
        

(18) 

Comparing equation(16) and (18), we can obtain 
1 1 1 1( ) ( ) ( ) ( )r r T k k k T

H H H H H k L L L L Ls q U qI U s s q U qI U                            (19) 
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The arbitrariness of the eigenvectors can be removed when 1j  , which is also I  , then the 

equation(19) can be simplified as 
1 1( ) ( ) ( ) ( )r r T k k k T

H H H H k L L L Ls q U qI U s s q U qI U              0,1,2, ,k         (20) 
Through the equation above, we have established a relationship between system matrices and 
eigensolutions successfully. Given that it is often difficult to get higher modes in engineering, this 
relationship can help to correct the modal truncation in sensitivity analysis. 

3.  Transformation from higher-order modes to lower-order modes 

3.1.  Approximate modal method 
There has been already an accurate method for the calculation for sensitivity of eigenvalues.  In this 
chapter, we will mainly analyze sensitivity of eigenvectors. Considering the eigenvalue problem 
derived by equation (3), the modal method express each eigenvector derivative as a linear combination 
of all the eigenvectors, which is 

2

.
1

N

i p ik k
k

u c u


                                                                 (21) 

The coefficients are given by the following equation 

. . .

. .

1
( )

1
(2 )

2

T
k p i p p i

k i
ik

T
i i p p i

u M C K u

c

u M C u


 



    
                                                 

(22) 

From the formula above we can see that the calculation for derivatives of the eigenvector is not as 
simple as eigenvalues, especially it is necessary to know all the eigenvalues and eigenvectors to get an 
exact value. 

3.2.  A power series expansion method based on FRF matrix 
It can be seen that the modal method is used to calculate the eigenvector sensitivity by superposition 
of modal. In order to ensure that the exact derivative of each modal shape is obtained, the modal 
method requires the superposition of all modal shapes. For multi-degree of freedom (DOF) 
engineering problems, the computational complexity of the method will be large using this method. 
Usually, only a few lower modes in large-scaled system are available. When the eigenvectors being 
derivatived are previous order vectors of system, modes in higher order can be neglected, which 
means  

.
1

L

i p ik k
k

u c u



                                                                  

(23) 

It can be seen from the above formula, this calculation only take the former L-order modes, directly 
ignoring the impact of high-order mode, is relatively simple modal truncation. However, only when 
the higher order modes have less contribution to the derivative of the low order mode,we can  get a 
result of smaller error by this method. If this conditon is not satisfied, the method can only calculate 
the approximate value of the derivative of an eigenvector, then there will be the following form of 
modal truncation error 

2 2

1 1

TN N
k i k

iH ik k
k L k L k i

u R u
E c u

    

 
 

                                                     
(24) 

Where 2
. . .( )i i p i p p iR M C K u    . The modal truncation error can also be transformed as 

1( ) T
iH H H i H H iE U I U R                                                         (25) 

Then the error item iHE  can be expanded as 
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1

0

( ) ( )k k T
iH i H H H H i

k

E q U qI U R


 



   
                                            

(26) 

Where q is the frequency shift constant. The convergence of the series is 

1i

r

q

q








（ 1, 2 2r L L N    ）                                              (27) 

Which is 1| | | |i L   . Now, we will transform the higher-order modes in iHE  to lower-order 

modes using the relationship derived in 2.3. Substituting equation (20) into equation (26) , we can 
obtain 

1

0

( ) [( ) ( ) ]k k k T
iH i k L L L L i

k

s
E q U qI U R

s q



 



      


                               
(28) 

For computational efficiency, we can only consider the first n items in the error. 
1

1

0

1

0 1 j j

( ) [( ) ( ) ]

[( ) ( ) ( ) ]
k

n
k k k T

iH i k L L L L i
k

Tn L
j i jk k i

i k i
k j

s
E q U qI U R

s q

u R uqs
q R

s q q q






 


 





 

      



    

  



 
                               (29) 

The more accurate calculation of eigenvector derivative is obtained. 

.
1

1
. . .

. . 1
1 0 1 j

( ) 1
(2 ) ( ) [( ) ]

2 ( )

L

i p ik k iH
k

T TL n L
k p i p p i k j i jT k k

i i p p i i i k i k
k k jk i
k i

u c u E

u M C K u u u R us
u M C u u q R

s q q


 

  






  


 

 
      

  



  

                         
(30) 

As the formula above shows, we have derived a power series expansion method based on 
frequency response function matrix for sensitivity analysis of viscously damped system.  

4.  Conclusion 
According to Neumann series and the shifted frequency constant q, we expand the frequency response 
function in two ways. Then a transformation relationship between system matrices and eigensolutions 
is proposed from the two expansions. Using the relationship, we derived a more accurate and efficient 
method for calculation of eigensensitivity. The method takes into account the influence of the higher 
order mode and can calculate the more accurate truncation error as long as the eigenvalues falling 
within the convergence domain. Therefore, when applied to calculate the derivative of the eigenvector, 
the method is obviously more accurate than the modal truncation method with only the previous L 
terms. When the shift frequency q=0, the method is consistent with the method of Li et al.[23], so the 
method in this paper can be seen as an extension of the method in paper[23]. In the engineering 
problem, for the multi-degree-of-freedom vibration system, this method can be used to give a more 
accurate result when it is necessary to consider the sensitivity of many modal vectors. 
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