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Abstract. We consider a method of calculation of an orthotropic plate with variable thickness. 

The solution is performed numerically by the finite element method. The calculation is made for 

the springs of a hang glider made of carbon fiber. The comparison of the results with Sofistik 

software complex is given. 

1. Introduction  

At present, synthetic materials and reinforced plastics are widely used in various branches of 

engineering. Since most reinforced plastics are characterized by a pronounced anisotropy of mechanical 

properties, the possibility of using methods developed for isotropic materials to calculate products from 

them is excluded. The physical and mechanical properties of anisotropic materials are described in 

extensive scientific and engineering literature, including [1-8].  

Many works have been devoted to the methods of calculation of products from anisotropic materials, 

including [9-15]. However, some questions remain poorly studied, in particular the problem of 

calculating anisotropic plates of variable thickness. The finite element method opens up wide 

possibilities for solving this problem.  

The investigated structural element of the aircraft and its design scheme are shown in figure 1. At 

the cut-off zones, concentrated forces act on the element, the peak value of which is 25 kN. In the 

calculation, we assume that these forces are uniformly distributed along the contour of the hole. Since 

this element is rigidly attached to the frame, only variable-width sections that work as cantilever beams 

are involved. The thickness of these areas is also variable: at the base - 10 mm, and at the end of the 

console - 8 mm. The load acting on the element is not normal to the plane of the console, but forms an 

angle of 10.5 degrees with the normal, so it will be decomposed into a normal and tangential component. 

The normal component causes bending, and under the action of the tangential component, the element 

is in the plane problem of the theory of elasticity (plane stress state). The action of the normal and 

tangential components can be considered separately, and then add up the stresses and displacements 

using the superposition principle.  

2. Materials and Methods  

We consider the effect on the element of the normal component of the load. The plate will be modeled 

by triangular finite elements. When calculating for bending, the considered finite element (figure 2) has 
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3 degrees of freedom: deflection
iw  and 2 angles of rotation 

ix and iy . The displacement field of the 

finite element is represented as: 
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Figure 1. The investigated structural element and its design scheme 

 

 
Figure 2. Triangular finite element 

 

For the deflection function we take the following approximation: 
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where 
1...9 – undetermined coefficients, 

1 2 3, ,L L L – natural coordinates. 
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1 3 2c x x  . 
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Coefficients , ,i i ia b c  at 2...3i   are determined by cyclic replacement of indices 1 2 3 1   . 

Coefficients 
1...9 are found by substituting in (2) the nodal values of the deflections and angles of 

rotation. To calculate the rotation angles, it is required to differentiate function (2) in x and y. The 

calculation of the partial derivatives with respect to x and y is performed as follows: 
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Finally, the expression for deflection through nodal displacements takes the form: 

 1 2 3{ } { } { } { },w N N N U        (5) 

where 
1{ }N , 

2{ }N , 
3{ }N  – form functions. 
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To obtain expressions for 
2{ }N and 

3{ }N , it suffices to perform a cyclic replacement of the indices 

in (6). 

To obtain the resolving equations, we apply the variational principle of Lagrange. The potential strain 

energy is written as: 
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where { } { }T

x y xy     – stress vector,    
T

x y xy     – strain vector.  

For orthotropic material, the relationship between stresses and strains has the form: 
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Elastic constants of unidirectional carbon plastic are given in [2]: 

1 2 1 2259.3 ; 4.49 ; 3.1 ; 0.404; 0.007E GPa E GPa G GPa       . 

We express from (8) the stresses through deformations: 
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Or in the matrix form: 

{ } [ ]{ },D        (10) 
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The relationship between deformations and displacements has the form: 
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The elements of the matrix [ ]B  depend on x and y. This matrix can be obtained using the symbolic 

math toolbox of the Matlab package. 

Taking into account (11), the stress and strain vectors can be written in the form: 

  [ ]{ }; { } [ ][ ]{ }.z B U z D B U         (12) 

Substituting (12) into (7), we obtain: 
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The work of external nodal forces represents the sum of their products to the corresponding nodal 

displacements: 

{ } { }TA U F .      (13) 

Minimizing the Lagrange functional W A    with respect to the nodal displacements { }U , we 

obtain a system of linear algebraic equations:  

[ ]{ } { }K U F ,                                                                     (14) 

where { }F  – vector of external node loads, 
3
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K B D B dA  – stiffness matrix. 

Since the elements of the matrix [ ]B  depend on x and y, numerical integration is used to calculate 

the stiffness matrix. The variable thickness of the plate is taken into account quite simply, since it can 

be set different for each finite element. In the calculation, we assume that the thickness varies linearly 

with x: 
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where 
1h  – plate thickness in the support zone, 

2h  – thickness at free end, l – distance from free end to 

support area. 

When calculating the thickness of each finite element, as x we consider the coordinate of its center 

of gravity, measured from the support zone. 

3. Results 

The calculation of a plate with variable thickness was carried out for the vertical component of the load 

at 
1 10h mm and

2 8h mm . We also performed calculation of plate with constant thickness 

1 2 8h h mm  . For the second case, the calculation was also made in the program complex Sofistik.  

Figure 3 shows the displacement w curves as a function of x and y, obtained by us in the Matlab 

package. The net surface corresponds to the result for a plate of constant thickness, painted over surface 

- for a plate of variable thickness. The finite element model in the Sofistik software package and the 

isospin of vertical displacements for a plate of constant thickness are shown in figure 4 and figure 5. 
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Figure 3. Change of displacements as a function of x and y for a plate of constant and variable 

thickness 

 
Figure 4. Finite element model in the program complex Sofistik 

 

 

Figure 5. The displacement isole in mm, obtained in Sofistik 

 

4. Discussion 

When calculating in the Matlab package, the maximum deflection for a plate of constant thickness was 

20.1 mm, for a plate of variable thickness - 10.5 mm. In the program complex Sofistik in the case of 

constant thickness max 18.8w  mm. The discrepancy between the results obtained it two software 

complexes is 6.5%. 

This discrepancy can be explained by the fact that the material has a strongly pronounced orthotropy: 

the module of elasticity in two mutually perpendicular directions differ in 58 times. 
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5. Conclusions 

The developed methodology and software package in Matlab environment allow calculating orthotropic 

plates of variable thickness of arbitrary shape. Comparison of the results with the Sofistik software was 

performed, and a satisfactory match of the results was obtained. 
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