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Abstract. This paper substantiates the method of mathematical planning for experimental 

research in the process of selecting the most efficient types of burning devices for tubular refinery 

furnaces of vertical-cylindrical design. This paper provides detailed consideration of an 

experimental plan of a 4x4 Latin square type when studying the impact of three factors with four 

levels of variance. On the basis of the experimental research we have developed practical 

recommendations on the employment of optimal burners for two-step fuel combustion. 

1. Introduction  

Mathematical statistics is the basis for an overwhelming majority of experimental research.  

Mathematical statistics is applicable when the results of experiments can be considered as random values 

or random processes, i.e. those connected with some uncertainty. So, research in working modes of 

burners of pipe furnace face a number of unregulated factors and experimental conditions, such as: the 

changeable composition of fuel refinery gases, dirt accumulation on water-cooled surfaces of a furnace 

and many other random factors (irregularities) whose precise recording is very complicated. Under such 

conditions, of special importance is planning the experimental procedure that is used for the 

mathematical description of processes and phenomena. They are described by mathematical modeling 

that connects values of controlled factors influencing the process with the outcomes of the experiment, 

called responses. The major requirement imposed on factorial plans of experiments is minimizing the 

number of experiments to obtain reliable evaluations of parameters calculated with simultaneous 

compliance of acceptable accuracy of mathematical models within the specified area of factor space. 

The theory of mathematical design of experiments, based on its statistical representation has developed 

fairly well. However, it is very rarely employed in the practice of measuring and testing in the field of 

heat engineering. Even in the manuals on thermotechnical testing of burners of boilers and furnaces 

mathematical statistics is insufficiently used for experimental works [1]. At the same time, this theory 

allows the study of poorly organized systems as they provide a logical plan (experiment matrix) and 

ways of solving tasks at different stages of the experiment.  

2. Approaches to the mathematical planning of the experiment 

Among the multiple experimental designs used in industry, the so-called Latin-square experiments 

deserve special attention.  Latin squares are described in the majority of books on experimental planning 

[2] and constitute plans that employ not all of the combinations of levels of factors.  Latin square plans 

are simple in use and are used only in three-factor experiments in cases when all interest factors have 
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the same number of levels n and it is preliminarily known that these factors do not interact or that these 

interactions can be neglected. Table 1 represents a sample of a Latin-matrix plan for a 3x4 factorial 

experiment.  

Table 1. Latin square experiment plan 

 

 

 

 

 

 

 

 

 

 

 

Here, two factors A and B are presented correspondingly as rows and columns and form a kind of 

chess-board. Each row and each column of this table corresponds to a certain level of the corresponding 

factor.  The third factor C is reflected in the squares of the table by characters – levels
kc . These 

characters are distributed among the squares of the table in such a way that a relevant character is 

encountered in each row and in each column only once. Therefore, regardless of disturbing impacts from 

the irregularity sources (random unaccounted factors) they will equally affect the calculation of average 

values along both rows and columns.  That is why a Latin square allows us to execute a double check 

over the dispersion of experimental data, i.e. column and row effect control.  Values y  (indexed kji ,,

) recorded in the squares of the table are experimental results (response parameters) obtained at i -level 

of factor A, j -level of factor В and k -level of factor С, where indexes kji ,,  can possess values from 

1 to 4 ( )4,3,2,1,, kji . 

From the point of view of factorial planning, a Latin square can be considered as an example of an 

incomplete factorial experiment. The observations are conducted in n2 out of n3 of possible complexes 

of conditions.  We need n times fewer experiments than under complete factorial experiments.  We 

reduce the number of experiments and do not lose an opportunity to evaluate the impacts of changing 

levels of each factor separately at the expense of neglecting the interaction among factors.    

When planning according to Latin square impact of four sources of dispersion is studied: the first 

source is row (factor А), the second source is column (factor В),  the third source is the Latin character 

“c”, recorded in squares of the table (factor С) and the fourth source is an experiment error. 

 Analysis-of-variance breakdown for nn  Latin square plan used in this work is presented in Table 

2.                                                                                                                                           

                                                                                                                                     

Levels of factor 

А 

Levels of factor В 

b1    b2  b3 b4 

        a1 

 

c1 

y111  

c2 

y122  

c3 

y133  

c4 

y144  

  a2 

 

 

c2 

y212  

 

c3

   

y223  

c4        

y234   

      

c1 

y241  

         a3 c3 

y313  

c4   

y324

      

  y324  

 

c1 

y331  

c2 

y342  

  a4 

 

c4 

y414  

c1 

y421  

c2         

y432  

c3 

y443  
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                             Table 2.  Analysis-of-variance breakdown of Latin square plans                                                                                                           
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The Table does not practically require explanations. Here, n is the number of levels of each of three 

factors: А, В and С. Sums of squares for these factors are calculated in an absolutely identical way. The 

error sum of squares is found by subtraction. In fact, all three factors fit into the plan of an experiment 

in a symmetrical way: in any plan of a Latin squares type factors presented by rows, columns and 

characters can be rearranged in any order and still producing Latin squares. 

Variance analysis of the significance of the impact of factors A, B, C on the values of response 

parameters employs Fisher’s test that allows comparing the values of selective variances MS of two 

independent samplings. To calculate 
obsrv

F  – of the observed value of  F we need to find the ratio of 

variances of two samplings. At that, the larger variance should be in the numerator and the lesser 

variance should be in the denominator. As the value of the nominator, according to the test, must be 

larger or equal to the value of the denominator, the value of 
obsrv

F  will always be larger or equal to unity 

(1). If this is not so, and 1
obsrv

F  , the inverse value  
1

obsrv
F



 should be used for application of the 

criterion F .   
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The critical point crit 1 2F (α,k ,k )  is found in the table of critical point of F distributions [3] for a given 

significance level  and numbers of degrees of freedom  1k  and 2k , where 1k is the number of degrees 

of freedom of a larger variance in the numerator of the ratio of these two variances, and 2k is the number 

of degrees of freedom in the denominator of the ratio. If experiment results in 
obsrv

F critF , the null 

hypothesis 
0H  on the significance of the impact of factors is accepted; if not, an alternative hypothesis 

1H  on insignificance of the impact of corresponding factors. If variance analysis shows the significance 

of the impact of linear effects (factors), i.e. it shows the significance of difference in the averages, the 

following question emerges: exactly which average values are different? Different criteria are used to 

check the differences of average values, in particular Duncan’s rank test [4].  

3. Planning of experimental research aimed at selection of optimal design of burners 

We set forth the task of experimental research as follows: to display the influence of four types of burners 

on working efficiency of vertical cylindrical tubular furnaces of different heat power without heat 

recycling of waste gases in the process of burning of different refinery gases.  To resolve this task we 

planned the experiment according to the scheme of 4х4 Latin square to study the impact of three factors 

A, B, and C on the process under study with four variance levels for each of those factors. Factor А is 

the type of gas burner, factor В is the heat power of tubular furnace and factor C is the combustion heat 

of burning refinery gases. Four types of burners were studied: diffusive with free air delivery; injective; 

diffusive-kinetic; and wind-box burner with two-step fuel combustion [5, 6]. 

Technical specifications and construction of the above mentioned industrial burners are described in 

[7, 8]. The burners are installed on the floor of cylindrical tubular furnaces with the following heat 

powers: 3.5; 5.0; 8.0; and 10.5 Megawatt. Refinery gases combustion heat varied at four levels: 52.3; 

65.8; 77.3; 88.4 MJ/m3. 

Table 3 presents the design of the experiment with the results of measurements.  The working 

efficiency of the tubular furnace “y” (response parameter) was assessed according to the sum of waste 

heat loss with emitted gases.   

                              Table 3. Design of experiment with the results of measurements   

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 presents 

the results of processing experimental data  according to the scheme of variance analysis presented in 

Table 2 at the number of variance levels for each factor  n = 4.  

  Table 4.   Results of processing experimental data                             

Levels of 

factor  А 

Levels of factor  В 

b1 b2 b3 b4 

a1 

 

c1 

y111 = 19.7 

c2 

y122 = 21.0 

c3 

y133 = 18.5 

c4 

y144 = 18.8 

a2 

 

 

 

c2 

y212 = 17.8 

 

c3 

y223 = 18.4 

c4 

y234 = 17.5 

 

 

c1 

y241 = 16.3 

 

a3 c3 

y313 = 20.1 

c4        

y324 = 19,5 

c1 

Y331 = 18.2 

c2 

y342 = 16.6 

a4 

 

c4 

y414 = 18.9 

c1 

y421 = 18.3 

c2 

y432 = 18.3 

c3 

y443 = 15.9 
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Factors 

 

Sum of 

squares 

Number 

of degrees 

of 

freedom 

Average square 

(variance MS ) 

Mean-square ratio   

(
obsrvF ) 

 

     А 

 

 

       
9.5aS 

  

 

        3 

 

 

 

   

3.17aMS   

 

   

6 10a

rmnd

MS

MS
 .  

  

    B 

 

      
14.6bS 

 

 

      3 

 

 

   
4.87bMS   

 

 

    

9 4b

rmnd

MS

MS
 .  

 
 

   C  

 

      
0 7cS  .  

 

      3 

 

 

    
0.23cMS   

 

 

    

0 44c

rmnd

MS

MS
 .  

 Sum 
  

27 9genS  .  

 

     15 

 

 

  
1 86genMS  .  

 

                 

               

    

 Remainder 
   

3 1
rmnd

S  .        6
 

   
0 52

rmnd
MS  .  

 

 

               

 

  

Significances of factors А, В and С on response parameter “y” were tested on the basis of Fisher’s 

variance ratio. For this purpose we used dispersion relations for the observed sizes of values of the 

criterion from Table 4: 

          6 1a
aobsrv rmnd

F = MS MS  . ;    9 4b
obsrv b rmnd

F = MS MS  . ;     0 44с
cobsrv rmnd

F = MS MS  . .  

As the value of the criterion observed for factor C turned out to be less than unity, the inverse value 

from this value    
1

0 44 2 27
-1

c
cobsrv rmnd

F = MS MS


 . .   should be used to evaluate the significance 

of factor C. Here, a larger variance 0 52
rmnd

MS  .  will be placed in the numerator, and the lesser 

variance 0.23cMS   will be placed in the denominator. Accordingly, the sequence of numbers of 

freedom 1k  and 2k , used to search for critical points of F-distribution is substituted here for inverse. 

Thus, for factors A and B at the significance level 0.05   and the number of degrees of freedom of 

compared variances 1k =3 and 2k =6, the value of the critical point is  0.05 3.6 4.76F  ; and for factor 

C, at the same significance level, the value of the critical point is   0.05 6.3 8.94F  . 

As the values of the criterion observed for factors A and B 6 1a
obsrv

F  .  and   9 4b
obsrv

F  .   exceed the 

values of the corresponding critical point  0.05 3.6 4.76F  , the impact of each of these factors on the 

response function is significant. Along with this, as the value   
1

2 27c
obsrv

F


 .  is less than the value of 

the corresponding critical point  0.05 6.3 8.94F  , the impact of factor C on the response parameter 

will be insignificant.  
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Now, let us define which averages are significantly different for significant factors A and B. For this 

purpose we will use the Duncan multiple rank test, having a preliminary calculated standard error of 

mean 0 52 4 0 36
rmndy

S = MS n  . . .   From the corresponding Tables for this criterion we will 

extract significant ranks for a number of degrees of freedom    62414 k  and significance 

levels 0.05   (Table 5): 

Table 5.   Significant ranks for a number of degrees of freedom 

        р                                                         2                               3                                 4 

    Ranks r                                                3.46                            3.58                             3.64 

Ranks, multiplied by standard error  

        
y

Sr                                                1.24                       1.29                    1.31 

We determine the averages for factor A according to the formula    



4

1

41
j

ijki yy ,  4,3,2,1i   

and arrange them in increasing order of the values of levels 
ia  of this factor: 2 17.5y  ; 4 17.85y  ; 

3 18.6y   ; 1 19.5y  .  Then, to evaluate the significance of differences among the heat powers of 

tubular furnaces we deduct lesser values from larger to find the difference between averages and 

compare them with 
y

Sr  : 1 2 2.0y y   > 1.24 – difference is significant;  1 4 1.65y y   > 1.29 – 

difference is significant;  1 3 0.9y y   < 1.31 – difference is insignificant;  3 2 1.1y y   <  1.24 – 

difference is insignificant;  3 4 0.75y y   <  1.29 –difference is insignificant;  4 2 0.35y y   < 1.24 

– difference is insignificant. 

Averages for factor B are determined according to the formula  



4

1

41
i

ijkj yy ,  4,3,2,1j . Then 

we arrange them in ascending order of the values of levels jb of this factor: 4 16.9y  ; 3 18.13y  ; 

1 19.13y   ; 2 19.3y  .  To evaluate the significances of differences between the types of burners, we 

deduct lesser values from larger, determine the difference between the averages and compare them with 

y
Sr  :   2 4 2.4y y   >  1.31 – significant difference; 2 3 1.17y y   <  1.29 – insignificant 

difference; 2 1 0.17y y  <  1.24 – insignificant difference;  1 4 2.23y y   > 1.29 – significant 

difference;  1 3 1.0y y   <  1.24 – insignificant difference;  3 4 1.23y y   <  1.29 – insignificant 

difference.  

Thus, determination of the difference between averages and evaluation of significances of the 

levels of factors A, B and C resulted in the following conclusions.  

4.   Conclusions 

The results obtained show that the burners installed on the floor of tubular cylindrical furnaces influence 

the efficiency of tubular furnaces (heat power of 3.5 Megawatt) but when changing over to furnaces 

with increased single capacity (5 – 10.5 Megawatt)  the structure of burner does not exert significant 

impact on the efficiency of the work of furnace. 
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The difference in the working efficiency of furnaces with injective burners, diffusive burners with 

free air delivery and diffusive-kinetic burners is insignificant. 

According to the results of experiment planning we have found the most optimal constructions of 

burners – wind-box burners of two-step fuel combustion. In addition, these burners as research [9–11] 

shows are low-toxic and are sufficiently used in Oil Refinery Plants in Russia.   
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