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Abstract. The technique of calculation of prestressed reinforced concrete trusses with taking 

into account geometrical and physical nonlinearity is considered. As a tool for solving the 

problem, the finite element method has been chosen. Basic design equations and methods for 

their solution are given. It is assumed that there are both a prestressed and nonprestressed 

reinforcement in the bars of the trusses. The prestress is modeled by setting the temperature 

effect on the reinforcement. The ways of taking into account the physical and geometrical 

nonlinearity for bars of reinforced concrete trusses are considered. An example of the analysis 

of a flat truss is given and the behavior of the truss on various stages of its loading up to 

destruction is analyzed. A program for the analysis of flat and spatial concrete trusses taking 

into account the nonlinear deformation is developed. The program is adapted to the 

computational complex PRINS.  As a part of this complex it is available to a wide range of 

engineering, scientific and technical workers 

1. Introduction 
The design of prestressed reinforced concrete structures, including reinforced concrete trusses, is 

currently conducted using empirical and semi-empirical formulas [1]. These formulas do not take into 

account all the features of the work of prestressed systems associated with the nonlinearity of 

deformation, with loading, unloading and possible reloading (change in the direction of deformation) 

due to a sharp redistribution of forces in the event of failure of one or another element. 

Recommendations for accounting for the nonlinearity of the deformation of concrete and 

reinforcement [2], which are given in the building norms and acts and annexes to them, carry 

conventional character. In addition, the normative documents practically do not contain 

recommendations for taking into account the geometric nonlinearity. Therefore, the development of 

methods for analysis of prestressed reinforced concrete structures, taking into account physical and 

geometrical nonlinearity, which makes it possible to determine the load-bearing capacity of structures, 

is a vital task. 

This work is devoted to the analysis of prestressed reinforced concrete trusses taking into account 

the nonlinearity of deformation by the finite element method. A prerequisite for the successful solution 

of this problem is the general theory of truss analysis, the foundations of which were laid in the 

nineteenth century [3] and developed later in the works of domestic and foreign scientists [4-8]. 
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The proposed method is based on algorithms of nonlinear analysis of structures implemented and 

tested in the computer program PRINS for other types of structures [9]. The results obtained by the 

authors of this article earlier [10-11] and the domestic [12-17] and foreign [18-21] experience in the 

development of nonlinear methods of hinge-rod systems analysis were used. 

2. Materials and Methods 

Nonlinear analysis of  structures is carried out in the program PRINS by the step-by-step method. At 

that on each step of loading the next equation is formulated and solved [9]:  

   
1 2

,NL NLK K K K u P
         (1) 

where    
1 2, ,NL NLК K K    the stiffness matrices of the zero, first and second orders, respectively; 

 К matrix of initial stresses;    u and   Р vectors of increments of nodal displacements and 

loads, respectively. The matrices 
1

 NLK 
  and 

2NLK 
  depend on the current step displacements in the 

first and second degree, respectively. This dependence was obtained in [9] in an explicit form. 

The matrix K , which elements are determined by the properties of the material, also depends on 

the step values of the displacements, but it is not possible to obtain this relationship explicitly. This 

matrix can be calculated at the beginning of the step, taking into account the physical properties of the 

material at the instant of time, and under the same assumptions at the end of the step. We denote these 

matrices K0 and K1 , respectively. Since the properties of the material change at the loading step, the 

matrix K can be found approximately as the half-sum of the matrices K0  and K1 . In this way, 

 0 1

1

2
K К К   . We’ll represent the matrix K in the form 

0 .K K K   (2) 

It follows from the above that    0 0 1 0 1 0

1 1
.

2 2
К K К К К К К К         Taking into account 

formula (2), equation (1) takes the form: 
 

   
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          (3) 

Equation (3) is solved in the program PRINS by an iterative method of additional loading, which is 

equivalent of the modified Newton-Raphson method. In this case, equation (3) is written in the form 

       
1 2

( 1)( ) ( 1)

0 ,
ii i

NL NLj j jj j
K K u P К K K u

 
            

(4) 

where  j  is the number of step loading, i is the iteration number at this step. The stresses in the 

elements at each loading step are calculated from the formula  

= ( +  ),х к х хЕ     (5) 

where kЕ  is the tangent modulus of the bar material, and х  and  -х  the linear and nonlinear 

components of the unit elongation of the bar, respectively, determined by formulas  

2 2 2
1

;    .
2
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(6) 
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In formulas (6) u, v, w are the displacements of the points of the bar in the direction of the local 

axes m m mX Y Z of the element (see Figure-1). The final values of the forces and displacements are found 

by summing the results obtained at each step of the loading. 
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Figure 1. Local (XmYmZm) and global (XYZ) coordinate system 

Diagrams   in the PRINS program can be specified either in analytical or in tabular form. 

Currently, in the program of  PRINS in the analysis of reinforced concrete trusses, two types of 

diagrams for concrete are realized, and one for reinforcement.  For concrete, either a three-line 

diagram recommended by domestic building codes [2] and given in a tabular form,  or curvilinear,  

recommended by the European Concrete Committee (ECC) [22] and given in analytical form is used. 

Curvilinear diagrams for compressed concrete are also recommended by domestic standards [2]. A 

preliminary study conducted by the authors showed that European and domestic standards give well 

coincident results. However, the norms recommended by the ECC are more convenient when using the 

finite element method, since they express stresses depending on deformations,  i.e. they are given in 

the form of a function ( )  , and not vice versa, as recommended by domestic standards [2]. For the 

reinforcements the Prandtl diagram is used. 

3. Results 

The proposed method is implemented in the computer program PRINS. To check the developed 

methodology, the truss shown in Figure-2 was calculated. 

 

Figure 2. Design model of truss 

The analysis was carried out with the following input data. 

Panel length d = 3 m, height h = 3 m; cross section dimensions for all bars 2020 cm, the bars 

reinforcement schemes are shown in Figure-3; heavy concrete of B20 class, non prestressed 

reinforcement of class А400, prestressed reinforcement of class K1400 were used; the truss was 

loaded with concentrated forces P = 25 kN at the nodes of the bottom chord of truss. The stress-strain 
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diagram for a compressed zone of concrete is shown in Figure 4. The load was applied in steps.  

At the first step, the prestress was carried out by setting of the temperature effect on the prestressed 

reinforcement of the bottom chord. The stress diagram in concrete at the first step of loading obtained 

with the aid of developed program is shown in Figure 5. At subsequent steps, an external nodal load 

was applied with a multiplier, the value of which was assumed to be 0.05 for steps from 2 to 15, and 

0.025 for the remaining steps. The purpose of the analysis was to determine the ultimate load for the 

truss and to study its behavior during the loading process. 

 

Figure 3. The bars reinforcement schemes: a – bottom chord, b – top chord,  c – lattice  

 

Figure 4. The stress-strain diagram for a compressed zone of concrete 

 

Figure 5. Preliminary stresses in concrete, kPa 

The destruction of the truss occurred at the 18th step with  nodal load equal to  0.775P. We give 

some of the analysis results that allow us to understand the causes of destruction. 

Figure 6 and Figure 7 show the  diagrams  of concrete stresses and the stresses in non prestressed  

reinforcement, respectively, at the 17th step of  loading.  It is seen from these figures that at the 17th 

step of loading the stresses in the concrete of the bars of the bottom chord and in the central vertical 

post become zero due to the cracking of the concrete, and the stresses in the armature of the central 

vertical reach the yield point. Consequently, at the 17th step the truss turns into a mechanism, and its 

further loading becomes impossible. 
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Figure 6. Stresses in concrete at 17th step of loading 

 

Figure 7. Stresses in non prestressed reinforcement at 17th step of loading 

Figure 8 shows the diagram of the total values of the forces in the bars at the 17th step of loading. 

 

Figure 8. The diagram of the total values of the forces in the bars at the 17th step of loading 

The deformed state of the truss at the 17th step of loading is shown in Figure 9. 

 

Figure9. Deformed state of the truss at the 17th step of loading (displacement scale 1: 1) 

4. Discussion 

The sharp fracture of the top chord in Figure-9 is explained by the fact that when the vertical 9-10 

breaks down, the central fragment of the truss 8-9-11-10 (see Figure 10) changes to a hinged 

quadrilateral in which it becomes possible the displacements of the nodes without deformation of the 

elements. 
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Figure 10. The numbering of the nodes 

We note that when geometric nonlinearity is taken into account, the initially symmetric design 

scheme of the structure is somewhat distorted, which leads to a distortion of the symmetry in the 

stress-strain state.  

Analysis of the causes of the destruction of the truss allows us to understand how to increase its 

load-bearing capacity. It is obvious that in this case it is necessary to strengthen the vertical  9-10 (Fig. 

10). As calculations show, replacing the reinforcement of this bar from type "c" to type "b" (Fig. 3) 

leads to an increase in the maximum load to 1.275 P. At the same time the nature of the destruction 

does not change, which gives the foundation to suggest that the central vertical remains the weak link. 

Indeed, as can be seen from Figure 11, the yield stress as before is achieved primarily in the central 

bar. 

Varying the dimensions of the cross sections and the reinforcement of the bars, and, possibly, the 

scheme of the truss, it is possible to achieve a further increase in its bearing capacity. 

 

Figure 11. The stresses in non-prestressed reinforcement at 37th step of load 

5. Conclusion 

The method proposed in this paper and the computer program based on it and implemented in the 

computational complex PRINS, make it possible to analyze in detail the processes of deformation of 

prestressed trusses under load up to their destruction, taking into account physical and geometric 

nonlinearity. Similar approaches to the calculation of reinforced concrete trusses in domestic design 

practice have not yet been used. The PRINS program is accessible to a wide range of specialists and 

can be useful in the analysis and design of reinforced concrete trusses 
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